Journal Information
Vol. 41. Issue 10.
Pages 542-546 (October 2005)
Share
Share
Download PDF
More article options
Vol. 41. Issue 10.
Pages 542-546 (October 2005)
Original Articles
Full text access
Limitations of the Technique to Determine Hydrogen Peroxide Levels in Exhaled Breath Condensate From Patients With Adult Respiratory Distress Syndrome
Visits
3763
A. Bruhn, L. Liberona, C. Lisboa, G. Borzone
Corresponding author
gborzone@med.puc.cl

Correspondence: Dra. G. Borzone. Departamento de Enfermedades Respiratorias. Pontificia Universidad Católica de Chile. Marcoleta, 345, 4.°. Santiago de Chile. Chile
Programa de Doctorado en Ciencias Médicas, Departamento de Enfermedades Respiratorias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Objective

Exhaled breath condensate represents an alternative to bronchoalveolar lavage for the analysis of markers of inflammation and oxidative stress in patients with adult respiratory distress syndrome (ARDS). However, analysis of hydrogen peroxide (H2O2) yields variable results that do not correlate with severity of the clinical presentation. In an attempt to explain this variability, the aim of the present study was to assess the possible limitations of the most commonly used technique for analyzing H2O2 in breath condensate.

Patients and methods

H2O2 levels were analyzed using the Gallati technique (linear range between 0.3 and 10 μM, r = 0.99; P<.05) in serial samples of condensate taken from the expiratory tube of a mechanical ventilator in 6 patients with ARDS.

Results

The volume of condensate obtained correlated to minute ventilation (r = 0.96; P<.05). In 11 out of 23 samples, a spectrophotometer reading was obtained at 450 nm despite the absence of the characteristic color of the reaction and in some of these samples a spontaneous reading was obtained that was indicative of contamination. The absorbance spectrum of these samples did not contain the characteristic peak for H2O2 at 450 nm and pretreatment of some samples with catalase did not affect the absorbance at 450 nm.

Conclusions

The spectrophotometric method commonly used to measure H2O2 levels in breath condensate lacks specificity in ARDS due to the presence of variable levels of contaminants in the samples, which lead to false positives.

Key Words:
Hydrogen peroxide
Adult respiratory distress syndrome
Oxidative stress
Exhaled breath condensate
Inflammatory markers
Gallati technique
Objetivo

El condensado del aire espirado es una alternativa al lavado broncoalveolar para estudiar marcadores de inflamación y estrés oxidativo en pacientes con síndrome de distrés respiratorio del adulto (SDRA). Sin embargo, el estudio del peróxido de hidrógeno (H2O2) ofrece resultados variables que no se relacionan con la gravedad del cuadro clínico. El objetivo del presente estudio ha sido identificar las posibles limitaciones de la técnica más utilizada para medir el H2O2 en condensado que expliquen esta variabilidad.

Pacientes y métodos

Se analizaron muestras seriadas de condensado de la vía espiratoria del ventilador de 6 pacientes con SDRA mediante la técnica de Gallati (lineal entre 0,3-10 μM, r = 0,99; p < 0,05) para H2O2.

Resultados

El volumen de condensado se relacionó con la ventilación minuto (r = 0,96; p < 0,05). En 11 de 23 muestras se obtuvo lectura a 450 nm sin el color característico de la reacción y en algunas se obtuvo también lectura espontánea indicativa de contaminantes. El espectro de absorción de estas muestras no mostró el pico característico del H2O2 a 450 nm y el pretratamiento de algunas muestras con catalasa no modificó la absorbancia a 450 nm.

Conclusiones

El método espectrofotométrico frecuentemente empleado para medir el H2O2 en condensado es inespecífico en el SDRA por la presencia en las muestras de cantidades variables de contaminantes que determinan falsos positivos.

Palabras clave:
Peróxido de hidrógeno
Síndrome de distrés respiratorio del adulto
Estrés oxidativo
Condensado del aire espirado
Marcadores de inflamación
Técnica de Gallati
Full text is only aviable in PDF
REFERENCES
[1]
SR Baldwin, CM Grum, LA Boxer, RH Simon, LH Ketal, LJ Devall.
Oxidant activity in expired breath of patients with adult respiratory distress syndrome.
Lancet, 1 (1986), pp. 11-14
[2]
MG Lykens, WB Davis, ER Pacht.
Antioxidant activity of bronchoalveolar lavage fluid in the adult respiratory distress syndrome.
Am J Physiol, 262 (1992), pp. 169-175
[3]
E Bunell, ER Pacht.
Oxidized glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome.
Am Rev Respir Dis, 148 (1993), pp. 1174-1178
[4]
NJ Lamb, JM Gutteridge, C Baker, TW Evans, GJ Quinlan.
Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration and chlorination.
Crit Care Med, 27 (1999), pp. 1738-1744
[5]
AG Lenz, PG Jorens, B Meyer, W de Backer, F van Overveld, L Bossaert, et al.
Oxidatively modified proteins in bronchoalveolar lavage fluid of patients with ARDS and patients at-risk for ARDS.
Eur Respir J, 13 (1999), pp. 169-174
[6]
CT Carpenter, PV Price, BW Christman.
Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS.
Chest, 114 (1998), pp. 1653-1659
[7]
K Takeda, J Shimada, M Amano, T Sakai, T Okada, I Yoshiya.
Plasma lipid peroxides and alpha-tocopherol in critically ill patients.
Crit Care Med, 12 (1984), pp. 957-959
[8]
GJ Quinlan, NJ Lamb, R Tilley, TW Evans, JM Gutteridge.
Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity and mortality.
Am J Respir Crit Care Med, 155 (1997), pp. 479-484
[9]
GJ Quinlan, NJ Lamb, TW Evans, JM Gutterridge.
Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome.
Crit Care Med, 24 (1996), pp. 241-246
[10]
C Richard, F Lemonnier, M Thibault.
Vitamin E deficiency and lipoperoxidation during adult respiratory distress syndrome.
Crit Care Med, 18 (1990), pp. 4-9
[11]
GJ Quinlan, TW Evans, JM Gutteridge.
Linoleic acid and protein thiol changes suggestive of oxidative damage in the plasma of patients with adult respiratory distress syndrome.
Free Radic Res, 20 (1994), pp. 299-306
[12]
GJ Quinlan, TW Evans, JM Gutteridge.
Oxidative damage to plasma proteins in adult respiratory distress syndrome.
Free Radic Res, 20 (1994), pp. 289-298
[13]
PG Metnitz, C Bartens, M Fischer, P Fridrich, H Staltzer, W Druml.
Antioxidant status in patients with adult respiratory distress syndrome.
Intensive Care Med, 25 (1999), pp. 180-185
[14]
GM Mutlu, KW Garey, RA Robbins, LH Danziger, I Rubinstein.
Collection and analysis of exhaled breath condensate in humans.
Am J Respir Crit Care Med, 164 (2001), pp. 731-737
[15]
S Kharitonov, P Barnes.
Exhaled markers of pulmonary disease.
Am J Respir Crit Care Med, 163 (2001), pp. 1693-1722
[16]
P Montuschi, P Barnes.
Analysis of exhaled breath condensate for monitoring airway inflammation.
Trends Pharmacol Sci, 23 (2002), pp. 232-237
[17]
D Kietzmann, R Kahl, M Muller.
Hydrogen peroxide in expired breath condensate of patients with acute respiratory failure and with ARDS.
Intensive Care Med, 19 (1993), pp. 78-81
[18]
WC Wilson, JF Swetland, JL Benumof, P Laborde, R Taylor.
General anesthesia and exhaled breath hydrogen peroxide.
Anesthesiology, 76 (1992), pp. 703-710
[19]
WC Wilson, PR Laborde, JL Benumof, R Taylor, JF Swetland.
Reperfusion injury and exhaled hydrogen peroxide.
Anesth Analg, 77 (1993), pp. 963-970
[20]
JI Sznajder, A Fraiman, JB Hall, W Sanders, G Schmidt, G Crawford, et al.
Increased hydrogen peroxide in the expired breath of patients with acute hypoxemic respiratory failure.
Chest, 96 (1989), pp. 606-612
[21]
H Gallati, I Pracht.
Kinetic studies and optimization of peroxidase activity determination using the substrates H2O2 and 3,3',5,5'-tetramethylbenzidine.
J Clin Chem Clin Biochem, 23 (1985), pp. 453-460
[22]
RM Effros, KW Hoagland, M Bosbous, D Castillo, B Foss, M Dunning, et al.
Dilution of respiratory solutes in exhaled condensates.
Am J Respir Crit Care Med, 165 (2002), pp. 663-669
[23]
A Antczak, D Nowak, B Shariati, M Król, G Piasecka, Z Kurmanowska.
Increased hydrogen peroxide and thiobarbituric acid-reactive products in expired breath condensate of asthmatic patients.
Eur Respir J, 10 (1997), pp. 1235-1241
[24]
D Nowak, A Antczak, M Krol, T Pietras, B Shariati, P Bialasiewicz, et al.
Increased content of hydrogen peroxide in the expired breath of cigarette smokers.
Eur Respir J, 9 (1996), pp. 652-657
[25]
Q Jobsis, HC Raagteep, SL Schellekens, WCJ Hop, PWM Hermans, JC de Jongste.
Hydrogen peroxide in exhaled air of healthy children: reference values.
Eur Respir J, 12 (1998), pp. 483-485
[26]
RM Effros, J Biller, B Foss, K Hoagland, M Dunning, D Castillo, et al.
A simple method for estimating respiratory solute dilution in exhaled breath condensates.
Am J Respir Crit Care Med, 168 (2003), pp. 1500-1505
Copyright © 2005. Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?