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a b  s t  r a  c t

Background:  Asthma  and  chronic  obstructive  pulmonary disease  (COPD) are  common chronic  airway
diseases  that  may  overlap in some  individuals.  Asthma  COPD overlap (ACO) is  a heterogeneous  condi-
tions  that  includes  smoking-asthma  (SA)  and COPD with  eosinophilia  (COPDe). MicroRNAs (miRNA)  are
regulators  of gene expression  with  a great  potential as  biomarkers.
Objectives: The objective  of this  study  was to identify  distinctive  miRNA  signatures in patients  from  the
whole spectrum  of chronic  obstructive  bronchial  disease (SA,  COPDe,  non-smoking  asthmatics  (NSA),
and  COPD) that  could  serve  as  diagnostic  biomarkers or  describe differential  molecular  mechanisms
with  potential therapeutic  implications.
Methods:  From a previously  characterized cohort of ACO, COPD  and  asthma  patients,  we selected a discov-
ery group  of 40 patients  for  miRNA expression  profiling  by  means of microarray  technology.  Differential
expression  of miRNAs  were  validated by  quantitative PCR  in the  complete cohort (n  =  274).
Results:  Thirty differentially  expressed  miRNAs  (eBAYES  p <  0.05,  fold change  ≥2)  were  found among  the
different groups  of patients  regarding  COPDe: 19  COPD-vs-COPDe,  13 NSA-vs-COPDe,  11  SA-vs-COPDe.
A  characteristic  down-regulated  miRNA  expression  pattern  was identified  in COPDe  patients.  Differen-
tial expression  of miR-619-5p  and miR-4486  in COPDe  patients  were  validated  in the  complete  cohort
(n  =  274).
Conclusions:  We postulate  that  COPDe  patients  show a characteristic  expression profile  of miRNAs  dis-
tinctive from  asthma and  COPD. Also that  SA  and  COPDe  patients, which  have been typically clustered  in
the  ACO group,  display  distinct molecular  events.

© 2020 Published by  Elsevier  España,  S.L.U.  on behalf  of SEPAR.

Los pacientes  con  EPOC  eosinofílica  presentan  un  perfil  de  miRNA  en suero
diferente  a  los  asmáticos  y  EPOC  no  eosinofílicos
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Antecedentes:  El asma  y la enfermedad  pulmonar  obstructiva  crónica  (EPOC)  son  enfermedades crónicas
comunes  de  la vía aérea  y pueden  solaparse en  algunos  individuos.  El  solapamiento de  asma y  EPOC
(ACO,  por  sus  siglas  en  inglés)  es una  enfermedad  heterogénea  que incluye  el  asma  en  fumadores (AF)

Abbreviations: COPD, chronic obstructive pulmonary disease; NSA, non-smoking asthmatics; COPDe, COPD with eosinophilia; SA, smoking-asthma; ACO, asthma COPD
overlap;  STROBE, strengthening the reporting of observational studies in epidemiology; miRNA, microRNA; NFE2L2/NRF2, nuclear factor erythroid-derived 2-like 2; EGFR,
epidermal growth factor receptor (also ErbB1 and HER1); MAPK, mitogen-activated protein kinase; PCR, polymerase chain reaction; qPCR, quantitative real-time PCR; RMA,
multi-chip analysis.
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y  la EPOC  con  eosinofilia  (EPOCe).  Los  microRNA  (miRNA)  son reguladores  de  la expresión de genes con
gran  potencial para su  uso como  biomarcadores.
Objetivos:  El  objetivo de  este  estudio  fue  identificar  las  firmas  características  de  miRNA  en  pacientes
del  espectro  de  enfermedades  pulmonares  obstructivas crónicas  al completo  (AF,  EPOCe, asmáticos  no
fumadores  y EPOC) que pudieran  servir como  biomarcadores  diagnósticos  o describir mecanismos  molec-
ulares diferenciales  con  potenciales  implicaciones terapéuticas.
Métodos:  A  partir  de  una  cohorte previamente  caracterizada de  pacientes  con ACO, EPOC  y  asma,  selec-
cionamos un grupo  de descubrimiento  de  40 pacientes para realizar  sus  perfiles de expresión  de  miRNA
mediante  microarrays.  La expresión diferencial  de  miRNA  se validó mediante  PCR cuantitativa en  la
cohorte completa  (n  = 274).
Resultados:  Se  encontraron  30 miRNA  expresados  diferencialmente (eBayes p <  0,05, fold change  [cambio
en  incremento] ≥ 2)  entre los  diferentes  grupos de  pacientes en relación  con la EPOCe:  19  EPOC comparado
con EPOCe, 13  asmáticos  no fumadores  comparado  con  EPOCe,  11 AF comparado  con  EPOCe.  Se  identificó
un patrón característico de  expresión con  regulación  a la  baja  de  miRNA. La expresión  diferencial  de
miR-619-5p  y miR-4486  en  los  pacientes con  EPOCe  se validó con  la cohorte al completo  (n  =  274).
Conclusiones:  Postulamos  que  los pacientes con  EPOCe muestran  un perfil  de  expresión  de  miRNA  car-
acterístico  y  diferente  al  del  asma y la EPOC.  También que  los  pacientes  con  AF  y con EPOCe,  que se han
agrupado  típicamente  en  el grupo de  ACO, muestran  eventos  moleculares  diferenciales.

© 2020 Publicado por  Elsevier  España, S.L.U. en  nombre  de  SEPAR.

Background

Asthma and chronic obstructive pulmonary disease (COPD) are
the two most common chronic respiratory diseases with different
mechanisms and clinical characteristics, although, features of both
diseases can be found in  some patients. Recently, renewed inter-
est has been raised to the existence of a  mixed phenotype called
ACO (asthma and COPD overlap).1–3 The specific diagnostic crite-
ria for this overlap are unclear and there is much controversy in
the literature upon its existence.4 Moreover, it pools two different
conditions, namely smoking asthma (SA) and eosinophilic COPD
(COPDe) that are clinically different although little is  known about
their underlying mechanisms.5 Despite the increasing interest on
the analysis of the clinical characteristics of ACO, so far there are few
biomarkers able to identify it,  probably due to the heterogeneity
and biological complexity of this entity.

MicroRNAs (miRNAs) are endogenous single-strand RNA
molecules, non-coding, 18–25 nucleotides in length, which reg-
ulate post-transcriptional gene expression, interacting through
sequence homology with messenger RNAs. Recently, miRNAs have
been proposed as molecules with an important role in lung devel-
opment, as well as in  the pathophysiology of various lung diseases.6

MiRNAs have great potential as biomarkers,7 due to  their high
stability to degradation, circulation in  body fluids,8 and easy detec-
tion by non-invasive techniques. Differentially expressed miRNAs
between healthy and asthmatic and/or COPD patients have already
been reported, demonstrating their role in  the regulation of differ-
ent inflammatory processes related to  these obstructive pulmonary
diseases and airway remodeling.6,9,10 However, the miRNA expres-
sion profile for asthma versus COPD was only addressed by Wang
et al., identifying seven up/down-regulated miRNAs differentially
expressed in the plasma of patients with asthma compared to
patients with COPD.11 Additionally, Lacedonia et al. did not observe
differences between the expression of miRNAs-145 and miRNA-
338 in ACO patients, compared to asthma or  COPD patients.12

The main objective of this study is to determine a miRNA molec-
ular signature distinctive of eosinophilic COPD and smoking asthma
in order to identify a  common molecular mechanism or a  potential
biomarker that could guide therapy.

Material and methods

Study design

This cross-sectional, observational, multicenter study was car-
ried out in 23 out-patient clinics from tertiary hospitals in  Spain run

by expert respiratory physicians. The design of the study has been
previously described elsewhere.13 Additionally, an independent
Ethics Committee or institutional review board for each study cen-
tre approved the final protocol. The STROBE standards for reporting
observational studies were followed.

Patients

We recruited adult patients (≥40 years) who  signed an
informed, written consent form, diagnosed with chronic bronchial
obstructive disease (post-bronchodilator FEV1/FVC ≤ 70%) and
divided into 4 groups: asthma (smokers and non-smokers) and
COPD (eosinophilic and non-eosinophilic). Patients had to  be in
a stable condition, free from exacerbations for at least 3  months.
Exclusion criteria included primary bronchiectasis, active cancer
(metastatic, progressive, or treated within the last 24 months),
chronic inflammatory diseases and poor performance status. Active
smoking was not an exclusion criterion.

As previously described,13 patients were grouped accord-
ing to the baseline diagnosis, smoking history and eosinophil
counts into four categories: (1) Non-smoking asthmatics (NSA):

patients with a  history of physician-diagnosed asthma accord-
ing to international guidelines,14 with chronic airflow obstruction
that were either never-smokers or ex-smokers with smoking
history of ≤10 pack-years; (2) Smoking asthmatics (SA): asthma
patients with chronic airflow obstruction and a  smoking history
of ≥20 pack-years; (3) COPD was diagnosed according to  interna-
tional recommendations15 by the presence of post-bronchodilator
FEV1/FVC ≤0.70 in patients with smoking history of ≥10  pack-years
in the absence of a clinical suspicion for asthma or a eosinophil
count <200 cells/�L in  blood; and (4) COPD with eosinophilia

(COPDe): COPD patients with eosinophil count ≥200 eosinophils/�L
in blood. We  selected this threshold to recruit the patients
because below this cut-off patients are unlikely to have sputum
eosinophilia, according to published evidence.16 Recruited patients
underwent socio-demographic and clinical questionnaires, lung-
function tests and blood extraction. Serum was  isolated and frozen
at −80 ◦C.

Total RNA isolation from serum

Total RNA including the miRNAs fraction were isolated from
200 �L of serum with the miRNeasy serum/plasma kit  (Qiagen,
Spain) according to the manufacturer’s protocol. 108 copies of
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Table 1

Characteristics of patients according to the baseline diagnosis.

NSA SA COPD COPDe p-Value

Subjects, n 85 44 84  61
Age, years 60.9 ± 1.3 59.8 ± 1.5 67.7 ± 0.9 65.1 ± 1.2 <0.001
Female 40 18 64  49 <0.001
Blood eosinophils cells �L−1 400 ± 57  262 ± 28  118 ± 7 373 ± 20 <0.001
Pre-BD FEV1% predicted 60.8 ± 1.9 59.0 ± 2.8 51.3 ± 2.0 50.8  ± 1.9 <0.001
Post-BD FEV1% predicted 66.5 ± 2.3 64.1 ± 3.0 55.2 ± 2.0 53.9 ± 1.2 <0.001
ICS % 100 95.5 66.3 61.5

Data are presented as mean ± SD or percentages, unless otherwise stated. NSA: non-smoking asthmatics, SA: smoking asthmatics; COPD: chronic obstructive pulmonary
disease; COPDe: eosinophilic COPD; pre-BD: pre-bronchodilator; FEV1: forced expiratory volume in 1 s; post-BD: post-bronchodilator; ICS: inhaled corticosteroids. p-value
represents t-test for differences between means and Chi-squared test for differences between proportions.

UniSp6 RNA Spike-in control (Exiqon, Spain) were added to serum
before RNA isolation. UniSp6 RNA Spike-in control and the circulat-
ing miRNA miR-16-5p were used for monitoring both RNA isolation
and cDNA synthesis procedures by  quantitative PCR (qPCR).

miRNA expression profiling in serum in a discovery set of patients

A discovery set of samples were selected from patients for
microarray analysis. Four groups were considered NSA (n =  10), SA
(n = 10), COPD (n =  10) and COPDe (n =  10). All  groups were matched
by sex. NSA and SA groups were also matched by allergy diagno-
sis (positive or negative skin prick test, n = 5 each group). COPD
and COPDe groups were matched by  currently smokers and non-
smokers (n = 5 each group).

Accurate miRNA isolation was previously confirmed by qPCR
for UniSp6 RNA Spike-in control and for the endogenous miR-16-
5p. Cq values were consistent between all 40 samples. Total RNA
(8 �L) was directly labeled with the FlashTagTM Biotin HSR Labeling
Kit and hybridized at 48 ◦C and 60 rpm for 42 h to  the GeneChip®

miRNA 4.0 Array (Applied Biosystems, Thermo fisher). Array nor-
malization was executed with the Transcriptome Analysis Software
4.0 (Applied Biosystems, Thermo fisher) following the robust multi-
chip analysis (RMA) and the detected above background (DABG)
algorithms. The eBayes method was  used for identification of
differentially expressed miRNAs between groups, considering as
biologically significant if displayed a  fold change value (FC; <−2
or >2) and p-value <0.05. Venn diagram representation was per-
formed through the Venny.17 Average (Log2) signal value from
each group were subjected to unsupervised hierarchical cluster-
ing using average linkage and Euclidian distance as a  similarity
metric to visualize likenesses among miRNA and pathologies (Mul-
tiExperiment Viewer MeV  4.9.0 software). Clustering results were
combined in a two-dimensional heat map  with color intensities
according to the pattern of miRNA expression. DIANA-miRPath v3.0
were used for KEGG pathway enrichment based in  predicted miRNA
targets provided by  the DIANA-microT-CDS algorithm.18

Real time quantitative PCR

We used the miRCURY LNATM Universal RT microRNA PCR
System (Exiqon, Qiagen, Spain) for the detection of miRNAs by
quantitative real-time PCR (qPCR) using SYBR green. Total RNA
(2 �L) obtained from serum were transcribed to cDNA with the
universal cDNA synthesis kit, diluted 20× with nuclease free water
and real-time PCR amplification with LNATM specific primers using
a  CFX96 system (Bio-Rad, Sapin). Product specificity was confirmed
in initial experiments by melting curve analysis and PCR efficiency
was calculated for each LNATM specific primer (100 ±  5%). Rela-
tive expression of the miRNA of interest was calculated using the
2−��Cq method.19 MiRNAs Cq values were normalized respected
to miR-16-5p Cq values.

Statistical analysis

Data are  represented as mean ± standard error of mean (SEM).
For multiple comparisons between groups Kruskal–Wallis test was
used and Mann–Whitney U-test was  used for compare differences
between two  independent groups. The significance level was  estab-
lished as a two-tailed p-value <0.05. miRNAs performance was
evaluated by receiver operating curve (ROC) analysis. For better dis-
crimination of COPDe group versus the rest of pathologies, principal
component analysis was  performed. Also a  multivariate logistic
regression analysis was  created using the cut-off values of miR-
619-5p and miR-4486 expression defined by the Youden index. Age,
sex, blood eosinophil count and percentage of post-bronchodilator
FEV1 were included as confounding variables. Statistical analyses
were performed with the SPSS Statistic 17.0 Software.

Results

Patient characteristics by group

Two hundred and seventy-four patients with asthma, COPD and
ACO were included in this study (85 NSA, 44 SA,  84 COPD and
61 COPDe). Extensive characterization of the demographic, clini-
cal and functional features of the entire population were reported
in.13,20 A  summary of the most prominent clinical charateristics are
shown in  Table 1. Briefly, the degree of bronchial obstruction was
moderate and symptoms were fairly controlled as assessed by the
CAT and ACT questionnaires (data not shown). Most patients (80%)
were treated with ICS (distribution by groups in  Table 1) and almost
all of them received a  long-acting �2-agonist (LABA). Six patients in
the NSA group were receiving oral corticosteroids. Patients classi-
fied as COPDe showed significantly lower post-bronchodilator FEV1
than SA patients (53.94 ± 2.1% vs. 64.1 ± 3.06%, Mann–Whitney
test; p  <  0.005). Albeit COPDe patients were previously sorted as
blood eosinophil count ≥200 cells/�L, this group presented higher
levels for blood eosinophils count than SA patient group (373 ± 20
vs. 262 ±  28 cells/�L, Mann–Whitney test; p  <  0.001).

Circulating miRNA profile in smoking asthma and eosinophilic

COPD patients

A discovery set of samples was  selected from patients for
microarray analysis considering the four groups: NSA, SA, COPD and
COPDe. Principal component analysis of the normalized signal val-
ues from the 40 samples showed that  COPDe samples appeared to
be more consistently grouped. Such pattern could not be observed
in the remaining pathologies (Fig. 1A).

Significant differences in  miRNA expression were mostly found
in comparison analysis between the COPDe group and the remain-
ing pathologies. Overall, 29 mature miRNAs and one small nucleolar
RNA were down-regulated in the COPDe group: 19 miRNAs in  com-
parison with COPD, 13 with NSA, and 11 with SA, respectively (see
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Fig. 1. MiRNA microarray profiling of NSA, SA, COPD and COPDe discovery groups. (A) Three-dimensional principal component analysis (PCA) plot showing the normalized
signal  values of the 40 microarray from non-smoking asthmatics (NSA), smoking asthmatic (SA), chronic obstructive pulmonary disease (COPD) and eosinophilic COPD
(COPDe) patients. (B) Heat map  representation of an unsupervised hierarchical clustering of the 30 significant differentially expressed microRNAs in comparisons including
COPDe  group. Arrow heads show miR-619-5p and miR-4486 miRNAs. (C) Venn diagram of significant differentially expressed miRNAs in all  pairwise comparisons including
COPDe.

Table 2

Differentially expressed miRNAs in comparisons including COPDe.

miRNA NSA vs. COPDe SA vs. COPDe COPD vs. COPDe

Fold change p-Value Fold change p-Value Fold change p-Value

hsa-miR-619-5p 4.27 0.044  5.47 0.019 8.87 0.001
hsa-miR-297 2.14 0.067 2.72 0.040 3.84 0.003
hsa-miR-3907 1.41 0.047  1.2  0.096 3.68 <0.001
hsa-miR-4701-3p 1.51 0.052  2.49 0.038 3.63 <0.001
hsa-miR-5093 1.86 0.154 2.28 0.032 3.51 0.003
hsa-miR-185-3p 2.55 0.071  2.46 0.087 3.41 0.011
hsa-mir-5095 1.85 0.003 2.15 0.001 3.19 <0.001
hsa-miR-595 1.97 0.020 1.81 0.044 2.83 <0.001
hsa-miR-4459 2.42 0.002 1.75 0.021 2.77 <0.001
hsa-miR-4486 2.15 0.001 2.67 0.002 2.75 <0.001
hsa-miR-4440 1.4 0.666 1.71 0.210 2.55 0.022
hsa-miR-3197 2.8 0.001 1.28 0.357 2.49 0.008
hsa-miR-4793-3p 1.26 0.568 1.65 0.680 2.41 0.041
hsa-miR-4462 1.73 0.059  1.29 0.088 2.25 0.006
hsa-miR-222-3p 1.81 0.113 1.44 0.118 2.17 0.047
hsa-miR-6741-5p 2.31 <0.001 1.85 0.003 2.14 <0.001
hsa-miR-7844-5p 1.33 0.126 1.18 0.432 2.11 0.001
hsa-miR-197-3p 3.97 0.001 1.66 0.056 2.04 0.016
hsa-miR-4717-3p 1.58 0.164 1.67 0.044 2  0.008
hsa-miR-23b-3p 2.2 0.008 2.59 0.011 1.92 0.035
ACA57 2.44 0.009 1.15 0.159 1.88 0.036
hsa-miR-1207-5p 2.1 0.003 1.64 0.018 1.8  0.004
hsa-miR-223-3p 2.01 0.036  1.57 0.129 1.78 0.088
hsa-miR-7107-5p 2.92 0.006 1.35 0.454 1.72 0.256
hsa-miR-7114-5p 1.19 0.084  2.07 0.005 1.59 0.003
hsa-miR-4433b-3p 1.68 0.325 2.21 0.025 1.37 0.352
hsa-miR-6716-5p 1.65 0.364 2.01 0.045 1.33 0.644
hsa-miR-30d-5p 2.32 0.007 1.05 0.422 1.12 0.281
hsa-miR-1909-3p 2.29 0.036  1.45 0.223 1.1  0.278
hsa-miR-4720-5p −1.16 0.940  2.26 0.044 −1.33 0.582

Table 2). A heatmap of unsupervised clustering analysis of all sig-
nificant differentially expressed miRNAs related to  COPDe is shown
in Fig. 1B. However, only miR-619-5p and miR-4486 were consis-
tently significant in all the comparisons between the COPDe group

and the remaining pathologies, as shown in  the Venn diagram in
Fig. 1C.

Predicted target genes of miR-619-5p and miR-4486 were
identified with DIANA tools. Pathway union enrichment analysis
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Table 3

Functional analysis of common predicted gene targets for miR-619-5p and miR-4486.

KEGG pathway Entry p-Value Target genes

Total Common miR-619-5p miR-4486

Metabolism of xenobiotics by cytochrome P450 hsa00980 2.4 × 10−6 4 GSTA4 MGST2 CYP1A2 GSTO2
ErbB signalling pathway hsa04012 0.007 6  ERBB2 PAK4MAPK1ERBB4PIK3R2 MAPK4

revealed that both miRNAs participate in  two KEGG pathways:
“Metabolism of xenobiotics by cytochrome P450” and “ErbB sig-
nalling pathway” by  targeting four and six genes related to these
pathways, respectively. Erbb2 is a  common predicted target gene
of both miR-619-5p and miR-4486 (Table 3).

Validation of the candidate miRNAs in the entire cohort by qPCR

Once identified miR-619-5p and miR-4486 as possible candi-
dates able to distinguish COPDe patients from the rest of patients
by microarray analysis (40 samples), we proceeded to validate them
in the complete cohort of 274 patients by qPCR. Expression levels
of miR-619-5p and miR-4486 were measured in 85 NSA, 44 SA,
84 COPD and 61 COPDe serum samples. MiR-619-5p was signifi-
cantly down-regulated in COPDe group compared with the rest of
the pathologies (Fig. 2A),  while miR-4486 was significantly down-
regulated in COPDe patients compared with NSA and COPD patients
(Fig. 2B).

ROC curves were determined for COPDe discrimination. Over-
all, miR-619-5p and miR-4486 significantly discriminate (p < 0.001)
COPDe patients from the rest of patients with AUCs of 0.63 and
0.61, respectively (Fig. 3A and B). Multivariate logistic regression
analysis of risk factors associated to COPDe was performed. Age,
sex, blood eosinophil count, percentage of post-bronchodilator
FEV1, and miR-619-5p were included in the model. MiR-4486
was not significant and, therefore, excluded from the model.
Crude and adjusted Odds Ratio (O.R.) are indicated in Table 4.
Comparison of the expected and observed frequencies by the
Hosmer–Lemeshow goodness-of-fit test (p-value <0.001) and by
ROC curve (AUC = 0.768; p  <  0.001) indicated a good fit for the model
(Fig. 3C).

Discussion

The main result of this work is the characterization, for the first
time, of a specific miRNA profile differentially expressed in  patients
with eosinophilic COPD that is  different to  that shown by  smoking
asthmatics, NSA or COPD.

Although the diagnosis of ACO by  clinical criteria includes both,
smoking asthmatics (SA) and COPD patients with eosinophilia
(COPDe), for better discrimination purposes, we have considered
SA and COPDe as two different entities based on previous work
from our group showing that SA and COPDe patients displayed
significant differences in demographic and respiratory functional
characteristics.13 Therefore, suggesting that different molecular
events may  underlie both pathological conditions. These differ-
ences between COPDe and SA has also been recently reported from
the clinical point of view.21

Overall, 30 miRNAs appeared down-regulated in  serum of
COPDe patients in comparison with other pathologies (19 COPD,
13 non-smoking asthma, and 11 smoking asthma). Global down-
regulation of miRNAs has been described in lung tissue from
individuals with COPD compared to  those with normal lung.22

Several studies have reported the existence of differentially
expressed miRNAs among individuals affected by  asthma or COPD
in comparison with healthy individuals finding a  variable number
of miRNAs associated, depending on the type of sample analyzed.6,9

Misregulation of miRNAs expression was seen in a  number of  differ-
ent tissues and inflammatory cell types in  lung, and these changes
correlated with disease severity/risk in a  number of studies.10,23

To our knowledge, the comparison of miRNA levels in serum
of asthmatic versus COPD patients has only been addressed by
Wang et al.,11 who  found 18 and 57 differentially expressed miR-
NAs, respectively. A subset of the most significant differentially
expressed miRNAs was  determined in  a  small cohort including ACO
patients; however, no significant differences in expression of these
miRNAs could be found between ACO and asthma or COPD.12 In a
larger cohort of patients, we  have been able to  identify significant
differences between ACO patients. Moreover, we have confirmed
the molecular heterogeneity of ACO pathology and differentiated
its entities (SA and COPDe). In  COPDe, miR-619-5p was  consistently
found down-regulated compared to COPD, NSA, and SA. For  miR-
4486, only comparisons between COPDe and NSA or COPD groups
were significantly different; however, such differences could not be
statistically confirmed between COPDe and SA groups. Altogether,
these results suggest that the physiopathology of COPDe has a  dis-
tinctive molecular signature at the miRNA expression level.

Tobacco exposure could be the triggering factor for the miRNA
down-regulation.6,23 In fact, several authors have shown that
tobacco smoke causes changes in  gene expression of respiratory
epithelium, which is linked to  the development of respiratory
diseases such as COPD.22,24–26 Most of these miRNAs were down-
regulated in  smokers and inversely correlated with gene expression
levels. Our results, however, cannot be explained by a direct
relation between miRNA down-regulation and tobacco exposure
observed in  COPDe patients, because of COPD and smoking asthma
patients, also had a current or former history of smoking. Therefore,
other molecular conditions specific of the COPDe pathology group
must be  considered.

Functional analysis of common predicted gene targets for miR-
619-5p and miR-4486 revealed that both miRNAs could participate
in the regulation of the “ErbB signaling pathway” and “Metabolism
of xenobiotics by cytochrome P450” by targeting 6 (ERBB2 and
ERBB4, MAPK1 and MAPK4, PAK4 and PIK3R2) and 4  (GSTA4,
MGST2, CYP1A2 and GSTO2) genes involved in  these pathways,
respectively. Epidermal growth factor (EGF) receptors include
HER1 (EGFR/ErbB1), HER2 (ErbB2), HER3 (ErbB3) and HER4 (ErbB4).
Dysregulation of the EGFR pathway causes aberrant EGFR signaling
which is  associated with the early stage pathogenesis of respiratory
diseases such as lung fibrosis, cancer and numerous airway hyper-
secretory diseases, including COPD, asthma and cystic fibrosis.27–30

“Metabolism of xenobiotics by P450” appeared as one of the top-
ranked COPD-related metabolic networks using disease related
genes and their direct interactors in an integrated human metabolic
network obtained from merging multiple databases.31 Biotransfor-
mation of xenobiotics leads to  the generation of reactive oxygen
species (ROS). In COPD patients, the protective antioxidant levels
are significantly depleted in alveolar macrophages.32 One of  the key
regulators of this endogenous antioxidant system is the transcrip-
tion factor NFE2L2/NRF2 (nuclear factor, erythroid-derived 2-like
2). There is significant data suggesting a  critical role for NRF2 in
preventing lung disease. Studies in COPD patients have shown that
NRF2 dependent genes are activated in  disease.32 Although accu-
rate functional studies should be performed to validate this in silico
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Table 4

Multivariate logistic regression of risk factors associated to COPDe.

Univariate analysis Age- and sex-adjusted analysis Multivariate analysis (AUC = 0.768.
p <  0.001)

Crude OR (95% CI)  p-value Adjusted OR (95% CI) p-Value Adjusted OR (95% CI)  p-Value

Age 0.985 (0.959–1.012) 0.271 – – – –
Sex  0.328 (0.165–0.653) 0.001 – – – –
Post-BD FEV1% predicted 1.019 (1.005–1.034) 0.01 1.018 (1.003–1.033) 0.022 1.022 (1.005–1.038) 0.009
Blood eosinophils cells �L−1 0.999 (0.998–1.000) 0.064  0.999 (0.998–1.000) 0.034 0.999 (0.997–1.000) 0.023
miR-619-5p 3.33 (1.705–6.502) <0.001 3.606 (1.813–7.171) <0.001 3.606 (1.179–7.309) <0.001
miR-4486 2.492 (1.393–4.458) 0.002 2.719 (1.480–4.997) 0.001

Crude and adjusted odds ratio (OR) are indicated in the  table. Comparison of the expected and observed frequencies by the Hosmer–Lemeshow goodness-of-fit test and by
ROC  curve indicated a  good fit for the model. AUC: area under the curve; post-BD: post-bronchodilator; FEV1: forced expiratory volume in  1 s.

results, we suggest that targeting the EGFR signalling pathway or
NRF2 modulators could be used as novel therapeutic approaches
for treating these respiratory diseases.

MiR-619-5p and miR-4486 were evaluated as potential serum
biomarkers to distinguish COPDe from asthmatic and COPD sub-
jects; however, low discriminatory power was obtained for each
miRNA individually. In contrast, an integrated logistic regression
model showed an adequate discriminatory potential of miR-619-
5p to distinguish eosinophilic COPD patients from asthmatic and
COPD patients and, particularly from smoking asthmatic patients.

Our study has several limitations. First, there is no gold standard
for the diagnosis of asthma in  a  COPD population. Second, the cut-
off eosinophil point to define COPDe is  arbitrary; a  threshold of
200 eosinophils/�L was chosen following previous studies.13 Also,
the smoking exposure of 20 packs-year in the asthma population
could lead to a selection bias. Third, our  patients were recruited
from public health services with universal health care and they
were receiving treatment for COPD or asthma according to clinical
practice; this could affect the results of the clinical outcomes like
blood eosinophils or exacerbations.

Conclusions

To our knowledge, this is the first study to  show significant
differences in  expression at the miRNA level between COPDe
and asthmatic or  COPD patients. In addition, our results have
shown that SA and COPDe patients, who have been typically clus-
tered in the ACO group because they share a  similar therapeutic
approach, display distinct molecular events. Thus, suggesting that
different pathophysiological mechanisms may  underlie these res-
piratory diseases and therefore, different diagnosis and treatment
approaches should be considered for smoking asthma and COPD
with eosinophilia patients.
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