Editorial

The Sheep as a Large Animal Experimental Model in Respiratory Diseases Research

La oveja como modelo experimental de animal grande en la investigación de patologías respiratorias

Marcelo De Las Heras Guillamón and Luis Borderías Clau

Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain

Sección de Neumología, Departamento de Medicina, Hospital San Jorge, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca, Spain

The use of animal models obtained through genetic manipulation has proven to be very useful for identifying the physical and pathological mechanisms in many different diseases. However, some publications have pointed out the lack of agreement between experiments performed in animal models and clinical trials in humans. These divergences have been associated with both the unnatural acquisition of the disease in experimental settings and the major anatomical, genetic, dietetic, environmental, toxic, and immune differences between animals and humans. In addition to these differences, a significant percentage of the experimental methodologies used in publications are deficient in quality. As such, several authors defend the need for an urgent restructuring of these experiments, including improved methodology in clinical trials with the same rigor as those performed with human subjects (adequate number, randomised sample, double blind setup, methods for results analysis, etc.), a record of trials and procedural protocols for systematic reviews and meta-analyses, and improved communication between those groups dedicated to animal experimentation and those who work with humans in the clinical setting. This would all serve to improve the application of results obtained from animal studies in humans.

This situation has led to the need, at least in clinical trials with drugs or other types of treatment, for animals that offer clear advantages as model systems, whether because they naturally share diseases with humans or have a development similar to that suffered by humans. Although murine models offer research advantages in some respiratory diseases due to their manageable, cost-effectiveness and versatility, different research groups in recent years have singled out their limitations for evaluating the response to treatment in different diseases. Animals such as dogs or sheep have been proposed as useful animal models, and although certain barriers exist to using them, above all economic barriers, there is a strong current of opinion that is promoting their use in circumstances in which the advantages surpass the inconveniences.

In the case of sheep, Australian researchers have highlighted the potential for their use in biomedical research, above all for respiratory diseases. The anatomy and physiology of the sheep respiratory system is more similar to that of humans than rodents, and has been proposed as a good model for vaccines, asthma pathogenesis and inhalation treatments. Furthermore, it is a large animal (30-90 kg, according to sex and race) with well-studied anatomy and physiology, easy to cannulate, and provides ease in taking frequent and/or large samples. Also, it provides a very useful specimen for surgical trials, measuring certain respiratory parameters and many other processes which cannot be carried in rodent models. All these advantages would make the sheep an optimal study animal, especially in research on respiratory diseases.

Starting with an important pathology such as asthma, and in light of the lack of a universally accepted animal model for this problem, sheep are placed along with dogs as the model for particle-induced diseases and the development of allergies with certain advantages over rodents, especially in studies on the inflammation of the lower respiratory tract. A sheep model naturally sensitised to the nematode Ascaris suum has been used for over a decade in research on involved basic mechanisms and in the study of new drugs. Furthermore, researchers have long been searching for an “asthmatic” animal model that could be triggered by an aeroallergen also capable of causing the disease in humans, and recently, Australian authors have developed an ovine model for asthma induced by dermatophagoides.

Continuing with other respiratory diseases, the ovine model has been used for physiopathological studies of acute bronchial obstruction and adult respiratory distress syndrome provoked by massive inhalation of smoke and hot air. It has also provided a
model for infant respiratory distress syndrome (IRDS) using premature lambs, and has facilitated research into the regulation of surfactant proteins.14 The findings have led to the development of new treatments such as nebulised surfactant, vasodilators, mechanical ventilation systems and extracorporeal membrane oxygenation.15-17

Meanwhile, sheep are also susceptible to natural bacterial infections shared with humans. Recent publications on pneumonia and sepsis associated with methicillin-resistant \textit{Pseudomonas} and \textit{Staphylococcus} in sheep18,19 could facilitate a study of colonisation of the airway and ventilator-associated pneumonia caused by these microbes.

Sheep have also been proposed as an animal model for lung cancer research. The clinical and anatomopathological similarities between a natural sheep lung tumour, known as an Ovine Pulmonary Adenocarcinoma (OPA), and human bronchioloalveolar carcinomas have been highlighted on several occasions.20 OPA could serve as a model for lung cancer with other applications in mechanical ventilation systems and extracorporeal membrane oxygenation.

In recent decades, new diseases acquired through contact with other species have appeared, such as HIV, ovine pneumonic pasteurellosis and SARSS-type infections and the A H1N1 flu, which require collaborations already offer important results such as those briefly mentioned in this editorial, where the veterinarian knowledge on surfactant proteins.

As we have indicated, human and animal health sciences have multiply.24

References

30. Michell B. What could Dr Finlay and Mr Herriot learn from each other? BMJ. 2005;331:1220-1.