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Bronchiectasis is characterized by chronic airway infection, persistent inflammation, 

and tissue damage, creating an environment portending toward antimicrobial 

resistance.1  While pathogens have historically been the focus, the growing 

recognition of the lung microbiome — including commensals and pathobionts — now 

add complexity to understanding resistance dynamics and therapeutic outcomes.2,3.  

The advent of next-generation sequencing technologies has transformed our ability 

to characterize resistance at the strain level and is increasingly being applied in 

epidemiological and clinical contexts.4 This has led to accelerated interests in 

pathogen genomic research, including microbiome analysis and its associated 

resistome. In some cases, in silico resistance prediction is supplementing traditional 

culture-based susceptibility testing, exemplified by its clinical application in 

Mycobacterium tuberculosis.5 However, unlike M. tuberculosis, whose closed pan-

genome and mutation-driven evolution make resistance prediction more 

straightforward, pathogens with open pan-genomes such as Pseudomonas 

aeruginosa, Staphylococcus aureus, and Escherichia coli pose greater challenges 

due to extensive recombination and horizontal gene transfer, although bioinformatic 

prediction tools are now making encouraging progress. 4,6 Critically, established 

resistance prediction tools and databases including ResFinder, the Comprehensive 

Antibiotic Resistance Database (CARD) and the Antibiotic Resistance Genes 

Database (ARDB) remain focused on established pathogens, limiting their ability to 

capture novel or commensal-associated resistance determinants, and therefore only 

offering a biased view of the broader resistome 7,8 Such challenges are further 

exacerbated in metagenomic studies of the lung microbiome, where diverse and 

poorly characterized species coexist alongside established pathogens, complicating 

resistance prediction at the community level. 
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Advances in metagenomics now enables functional characterization of the lung 

microbiome, offering insights into resistome structure.9 In bronchiectasis, antibiotic 

resistance emerges through stepwise mutations disrupting antibiotic–drug target 

interactions and the independent acquisition of exogenous resistance.4 Although 

initially identified in human pathogens, many horizontally acquired resistance 

determinants have origins in environmental or neighboring commensal species, 

which thus represent key microbial reservoirs of clinical resistance.  8,10 Within the 

microbiome, the resistome therefore represents an integrated, adaptable functional 

substructure that responds to antibiotic pressures. Here, sensitive organisms 

decline, while resistant strains persist or even expand, reshaping the ecosystem 

based on functional composition.  Resistome profiling may therefore offer a 

complementary view to taxonomic microbiome analysis providing distinct analytical 

insights.11 High-throughput sequencing — through short-read shotgun approaches 

and, increasingly long-read technologies — now permits resistome assessments at 

unprecedented scales. 11,12 Advancing from inference, based on taxonomy or isolate-

specific sensitivity, metagenomics offers a potential for therapeutic stratification, 

personalized antibiotic regimens and improved stewardship tailored to individualized 

resistance landscapes. Recognizing the resistome as a dynamic, functional feature 

of the lung, and not merely a reflection of pathogen burden, therefore represents a 

major shift in understanding of the bronchiectasis milieu and the treatment response. 

1,8 (Figure 1) 

Microbiome studies increasingly highlight the critical role of community composition 

in bronchiectasis pathophysiology.2 Genera such as Neisseria, Rothia, and 

Aggregatibacter,  previously unrecognized, have now emerged as important, with 
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Neisseria linked to adverse outcomes and Rothia and Aggregatibacter exerting 

protective (anti-inflammatory) effects. 3 13 14 Metagenomics reveal that antimicrobial 

resistance genes are widespread across pathogens, commensals and pathobionts, 

which collectively contribute to a "core" airway resistome, largely independent of 

disease status.9 Analysis of the Cohort of Asian and Matched European 

Bronchiectasis (CAMEB) has revealed distinct "resistotypes" correlating to clinical 

outcomes, where multidrug-dominant profiles link with frequent exacerbations and 

poorer lung function.15 Such associations have been independently validated in the 

European EMBARC-BRIDGE cohort demonstrating that, despite geographic 

variation in microbiomes, associations between key genera – pathogenic, 

commensal and pathobiont - including resistance profiles remains largely conserved. 

16 Taken together, this highlights the airway resistome as a critical determinant of 

microbiome resilience, therapeutic response and disease trajectory in bronchiectasis 

contrasting with the more traditional view that commensals represent passive 

bystanders.  

 

Predicting antibiotic resistance from lung microbiomes is complicated by the 

presence of uncharacterized or ‘silent’ resistance genes activated through promoter 

mutations, mobile elements, or antibiotic selection. 8,10 While extensively studied in 

pathogens, these processes remain largely unexplored in commensals. Here, it 

should be recognized that resistance mechanisms including CTX-M-type 

cephalosporinases, NDM-type metallo-β-lactamases and MCR-1-mediated colistin 

resistance all originated as uncharacterized genes within human and/or 

environmental bacterial communities, until their emergence in clinical pathogens in 

response to antibiotic selective pressures. Similarly, resistance mechanisms likely 
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exist (undetected) in commensal and pathobiont constituents of the microbiome, 

silently influencing community dynamics under antibiotic pressure. This, in turn, may 

have protective or deleterious consequences depending on whether resistance 

promotes microbiome resilience against pathogenic invasion or facilitates an 

expansion of pathogenic species that disrupts beneficial microbial airway 

interactions.17,18 Current diagnostic frameworks rarely culture or examine commensal 

species, creating a “blind spot” in resistome surveillance.7 Consequently, microbiome 

models lack complexity, due to inherent biases in existing antimicrobial resistance 

gene (ARG) databases and the limited ability to predict uncharacterized resistance 

mechanisms de novo from metagenomic data alone. Enriching curated ARG 

databases with resistance genes from commensal and environmental microbes, 

combined with innovative machine learning and data-integrative approaches, will be 

critical in overcoming these limitations (Figure 1). Here, metagenomics may offer a 

solution that guides therapeutic decision making allowing improved patient 

stratification. To achieve this shift necessitates pathogen-centric ARG databases to 

incorporate large-scale environmental and commensal-pathobiont WGS datasets 

coupled to predictive modelling which incorporates functional metagenomics, 

bacterial genome-wide association studies (GWAS), and pioneering tools such as 

alchemical free energy modelling to allow de novo prediction of novel resistance 

variants. 19,20 Reference-free machine learning approaches, such as k-mer–based 

prediction offers an additional pathway to uncover novel resistance elements within 

the broader microbiome.21 Even if this is to be realized, significant computational 

challenges remain, including the need for scalable de novo ARG discovery pipelines 

and integrated frameworks capable of combining sequence, structure, and 

phenotype predictions into standardized clinically interpretable bioinformatic 
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pipelines. 7 Future models must address the confounding effects of horizontal gene 

transfer, genetic redundancy and complex community interactions, while striving to 

support predictive systems applicable to the broader microbiome as opposed to 

individual isolates. 

 

As laboratory diagnostics and antibiotic sensitivity testing become increasing 

genome-centric and digitised, knowledge of the resistome must expand to improving 

clinical prediction. The resistome likely has a key role in understanding microbial 

survival under antibiotic pressure and may dictate how microbial ecosystems 

establish, persist, and respond to therapy within the airway. Clinical anomalies — 

such as the efficacy of azithromycin in treating P. aeruginosa exacerbations, the 

failure of targeted eradication therapies and inconsistent outcomes in bronchiectasis 

trials such as ORBIT and RESPIRE — suggest that the mechanistic underpinnings 

of therapeutic success (and failure) remain incompletely understood.22 Deeper 

integration of  microbiome and resistome analyses will be key to advancing our 

understanding of the anti-microbial therapeutic response, guiding novel drug 

development and optimizing clinical trial design.22,23 Dynamic resistome profiling 

enables precision prescribing, early identification of high-risk microbiomes and offers 

‘real-time’ prediction of treatment outcome with increased precision. By concurrently 

incorporating commensal resistomes into therapeutic planning, we recognize its dual 

role as a reservoir of resistance and potential mediator of microbial resilience. 

Machine learning algorithms, predictive molecular modelling and expanded 

environmental surveillance will further refine resistome interpretation beyond the 

constraints of curated clinical databases. Importantly, significant hurdles remain: 

defining comprehensive resistotypes, validating resistotype–phenotype associations 
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and translating these into routine practice. Realizing the potential of the microbiome-

resistome dynamic will necessitate moving beyond the narrow focus on classical 

pathogens, and embracing the complexity of microbial ecosystems, recognizing the 

resistome in all forms as a central determinant of clinical outcomes in bronchiectasis. 

Characterization of the resistome in bronchiectasis has significantly progressed in 

recent times illustrating that antibiotic resistance in chronic airways disease is a 

multifactorial phenomenon shaped by microbial ecology, host interaction and 

dynamic environmental pressure. Fully appreciating this will demand integrative 

models beyond genomic profiling and consideration of airway commensals and 

pathobionts, including their resistance mechanisms and survival strategies, as 

integrated components of the broader microbiome (Figure 1).  
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