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Graphical Abstract 

 

 

 

The algorithms used by CPAP machines to identify and characterize residual 

respiratory events vary between brands and between models from the same brand. 

Additionally, CPAP manufacturers employ diverse methods for estimating and reporting air 

leaks which complicates the analysis of patient data from CPAP built-in software reports (1). 

This issue is particularly relevant in the context of the growing role of telemonitoring in 

managing these patients (2). Moreover, while leak intensity - in liters per minute - is a critical 

parameter well-recognized for its significant impact on PAP device performance (2–4), the 

leak pattern itself is another often-underestimated aspect that can significantly affect PAP 

performance (5,6). In a previous publication (7), we proposed a nomenclature for leak 

patterns based on real-life polygraphic recordings. Building on this work (7) and subsequent 

studies (3,8–10), we have developed a sophisticated bench model that realistically emulates 

sleep apnea syndrome, capable of replicating a wide range of leak patterns, closed-loop 

upper-airway obstruction, and ventilatory efforts. Our primary aim was to assess the 

performance of CPAP devices to accurately detect the respiratory events in the context of 

various unintentional leak patterns. Our secondary aims were to assess the performance of 

CPAP devices to classify the nature of the respiratory events (obstructive/central) and their 

severity (hypopnea/apnea). 

https://www.zotero.org/google-docs/?w9npcG
https://www.zotero.org/google-docs/?q710gs
https://www.zotero.org/google-docs/?N5TBAe
https://www.zotero.org/google-docs/?b1DYWZ
https://www.zotero.org/google-docs/?tSECdv
https://www.zotero.org/google-docs/?65kpp8
https://www.zotero.org/google-docs/?8gzmJ7


Page 3 of 14

Jo
ur

na
l P

re
-p

ro
of

 

The sophisticated bench model used a ASL 5000 (Ingmar Medical, Pittsburgh, PA, USA) 

and was able to simulate the patient's active breathing (figure 1). We used a mannequin head 

with realistic upper airways (Georges©, KerNel Biomedical, France) as the interface between 

the CPAP device and the ASL 5000. An automatic Starling resistor was used to simulate airway 

obstructions. The bench setup was engineered to simulate obstructive apneas for 25 seconds 

and obstructive hypopneas for 50 seconds. The ASL5000 was used to simulate central apneas 

with a gradual decrease and resumption of respiratory effort. Four main respiratory scripts 

were created for each type of event: obstructive apneas, central apneas, obstructive 

hypopneas, and central hypopneas. Each script was played in association with each of the six 

previously described unintentional leak patterns (7), as well as without leakage (baseline 

condition). 5 CPAP devices all set in continuous pressure mode at 10 cmH2O were evaluated: 

(1) ResMed AirSense 11, (2) Philips DreamStation 2, (3) Sefam S.box, (4) Lowenstein Prisma 

SMART max, and (5) BMC G3 A20. Detailed methods are available in the supplementary 

material. 

 

Performance metrics of the 5 devices are presented in Figures 2, e-figure 4, e-figure 5, 

e-figure 6; e-figure 7 and e-figure 8. E-figure 4 illustrates the six leakage patterns used in the 

simulations along with the detailed leak flow data recorded by each device on the test bench. 

In the absence of unintentional leaks, the detection capability varied from one device to 

another. Four out of 5 devices detected 100% of apneas, regardless of their origin (devices 1, 

2, 3 and 4). Only device 3 was able to detect central hypopneas in the absence of unintentional 

leak (figure 2). Overall, leak pattern number 4, characterized by a pure intermittent leak 

pattern, led to a significant and systematic decrease in the devices' ability to accurately 

identify and classify respiratory events. This pattern led predominantly to an underestimation 

of the number of events in devices 1, 2, 4, and 5. It led to an overestimation in device 3. When 

central hypopnea was generated, device 3 was still able to detect the events in the presence 

of leakage, while device 4 partially detected them when the UL was intermittent,  likely 

because it interpreted intermittent leakage events as central hypopnea events. When 

comparing the mean residual Apnea Hypopnea Index (AHI) reported by built-in software 

under baseline conditions (no leaks) to that reported in the presence of intermittent leak 

patterns, the residual AHI was underestimated by an average of 33.8 ± 11.2% (p<0.001). 

https://www.zotero.org/google-docs/?x5lJIP
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Similarly, with continuous leak patterns, the AHI was underestimated by an average of 5.1 ± 

4.5% (p<0.001) compared to baseline. Details on the ability of the 5 devices to characterize 

the nature and severity of the respiratory events are presented in supplementary material.  

 

 

We demonstrated that CPAP devices exhibited inconsistent performance in event 

detection and that their accuracy was significantly compromised by leak patterns. As 

previously described (11,12), our bench test study corroborates that devices generally 

succeeded in identifying simulated obstructive apnea events but encounters challenges with 

simulated obstructive hypopnea events. The failure of some CPAP devices to accurately 

identify hypopneas can be attributed to several factors: i) manufacturer-specific definitions 

of the hypopnea threshold (13,14) or the choice to exclude non-obstructive hypopneas from 

detection (device 1), ii) the use of linearized flow rather than raw flow to score events (15), 

or iii) the presence of leaks (13,15). In the case of leaks, depending on the type of simulated 

leak patterns, event detection can be intentionally suppressed by some devices to reduce 

false positives, which may explain the reduced performance of certain machines in detecting 

events with inhomogeneous leak patterns. These CPAP difficulties in identifying hypopneas 

are further accentuated in real-world when comparing the AHI measured by CPAP to that 

measured by polysomnographers according to the American Academy of Sleep Medicine 

(AASM) definition (16) (29). Consistent with previous studies comparing AHI measured by the 

CPAP (AHIflow) versus AHI measured by polysomnography (AHIPSG) (17–19), the correlation 

between device-detected and manually scored breathing events is higher for apneas than for 

hypopneas. 

A recent meta-analysis (16) revealed greater dispersion around the pooled mean 

hypopnea index bias compared to the AHI bias, supporting the idea that there is significant 

variability in how different devices detect hypopnea events. It is crucial to note that the 

studies included in this meta-analysis do not address the straightforward questions faced by 

clinicians, since they do not clarify whether patients with central sleep apnea and/or 

significant CPAP leakage (i.e., substantial leakage leading to inaccurate AHI measurement 

and/or counteracting obstructive respiratory events) were excluded. Given the difficulties 

CPAP devices have in identifying the central nature of hypopneas, some manufacturers' 

decision to exclude these central events from the AHIflow calculation may lead clinicians to 

https://www.zotero.org/google-docs/?UChJM8
https://www.zotero.org/google-docs/?q8OALJ
https://www.zotero.org/google-docs/?dP3x0A
https://www.zotero.org/google-docs/?OH4T6j
https://www.zotero.org/google-docs/?xYSxug
https://www.zotero.org/google-docs/?53AnMZ
https://www.zotero.org/google-docs/?Lo9mt7
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underestimate the residual AHIflow. Some concerns may arise from this choice, such as limiting 

the clinician to detect treatment-emergent central sleep apnea via telemedicine and CPAP 

monitoring program. 

Our results show that some devices consistently misclassify central apneas as 

obstructive apneas. In auto-adjusting mode, we can assume that this misclassification would 

likely lead to an inappropriate increase in auto-adjusting pressure. The observed variability in 

device performance is likely to arise from the inherent functioning of the algorithms, including 

thresholds for flow or tidal volume or the different technologies used by the devices to 

distinguish between obstructive and central respiratory events. It’s important to note that 

even when two devices use the same technology, their algorithms can still differ significantly 

in how they operate.   

In this study, we opted to perform the tests in fixed mode to focus on evaluating the 

impact of continuous versus intermittent leaks on the device's performances to detect and 

classify respiratory events. Testing the devices' ability to adjust pressure in response to these 

events was not within the scope of this work and will be addressed in future research. 

Furthermore, allowing the devices to freely adjust pressure in automatic mode would have 

introduced bias, as our test bench is designed to normalize simulated respiratory events with 

adequate positive pressure, potentially hindering the primary objective of this study. 

 

This study has several strengths and limitations. As a bench modeling study, it benefits 

from standardized procedures and controlled testing conditions, allowing us to evaluate 

devices under scenarios we precisely define. However, bench data may lack the complexity 

and nuances observed in in vivo settings due to the limited range of test conditions. Despite 

this, our innovative model closely reflects real-life scenarios. First, the leakage patterns 

simulated in this study were archetypal, derived from overnight CPAP polysomnography, and 

previously published (7). In simulating leakage patterns, we couldn't maintain the exact 90th 

percentile of leakage across all patterns: by nature, each pattern has a unique leakage 

distribution, even though the total leakage volume remains consistent. While average and 

total leakage are held constant for each pattern, the peaks and lows differ due to each 

pattern’s specific distribution characteristics. Second, in modeling respiratory events, we 

ensured that at least one of the five devices tested could detect and classify these events, 

thereby validating the recognizability of our simulations. We applied a strict threshold of 50% 

https://www.zotero.org/google-docs/?7dhHFY
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flow reduction and an event duration of 50 seconds—more stringent than the AASM 

hypopnea criteria. This deliberate choice enhanced detectability and minimized false 

negatives, highlighting the challenges devices face in event detection. Importantly, the study's 

primary focus was to assess how varying leak patterns affect CPAP performance in event 

detection, rather than to evaluate the intrinsic scoring accuracy of the devices themselves. 

Third, our model successfully replicated true ventilatory recoveries with increased post-event 

respiratory drive, adding physiological realism to the simulations. Furthermore, we 

characterized obstructive events with a U-shaped flow pattern, effectively mimicking real-life 

obstructive respiratory events. 

 

The 2019 AASM guidelines recommended starting therapy with auto-CPAP for adults 

without comorbidities (20). Additionally, telemonitoring-guided interventions were 

suggested during the initial phase of therapy. Accurate detection of residual respiratory 

events by devices is crucial in this context. Our study demonstrated that intermittent leaks 

significantly reduced CPAP accuracy, often leading to an underestimation of residual events. 

This highlights the need for caution when interpreting residual AHI data from built-in software 

or telemonitoring systems. However, clinical studies are necessary to assess CPAP 

performance in comparison to polysomnography under real-life intermittent leak patterns 
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Figure 1. Comprehensive Bench Model including the following components: i. The leak module connected to its dedicated micro-computer. ii. 
The Starling resistor and the automatic electric syringe pump, linked to their dedicated micro-computer, together constituting the upper airway 
module. iii. The test lung (ASL 5000), connected to an analog module capable of varying muscular pressure and respiratory frequency. All three 
elements are managed by the central control computer, which executes the scripts and stores the data. The interface was placed on a mannequin 
head with realistic upper airways (Georges©, KerNel Biomedical, France). 
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Figure 2. Heatmaps illustrate the ability of the 5 CPAP devices to accurately detect the presence of respiratory events, regardless of their type 
(obstructive or central) or severity (hypopnea or apnea).  The detection capability is represented on a scale from 0 to 100% or above. A 0% 
indicates that the device failed to detect any instances of a particular type of respiratory event with a specific leakage pattern The green shapes 
above each heatmap represent the leakage patterns tested during the study. A 100% indicates that the device detected all 6 instances of 
respiratory events. A score >100% indicates that the device detected more than 6 instances of respiratory events of any type or severity with a 
specific leakage pattern. For example, if a device detects 7 events instead of the actual 6, the subscore would be 116.7%. The red color indicates 
poor detection, the green color signifies accurate detection, and blue/purple represents an overestimation of respiratory events. Device 1: 
AirSense 11; device 2: DreamStation 2, Device 3: S.box, Device 4: Prisma SMART max and device 5: G3 A20. Obstructive apnea (OA); Central 
apnea (CA); Obstructive hypopnea (OH) and Central hypopnea (CH). 
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