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Histological Features and Gene Expression

Profiling in Lung Transplantation From

Donation After Circulatory Death

To the Director,

Recently, lung transplantation from donation after circulatory

death (DCD) has become a  routine clinical practice to address

the donor shortage.1,2 However, lungs stored in  warm condi-

tions undergo more severe damage than those stored in cold

conditions, and ischemia reperfusion injury (IRI) following warm

ischemia (WIRI) is the most problematic issue in  lung transplan-

tation from DCD compared to  donation from brain death donors

(DBD). Although WIRI has been recognized as an enhancement

of IRI following cold ischemia,3 recent studies highlight notable

mechanistic differences.4–6 Furthermore, a comprehensive RNA

sequencing analysis of lungs from a mouse WIRI model recently

identified numerous genes expressed earlier than the transcrip-

tion factor EGR-1, which has been considered the master regulator

for pulmonary IRI.7–11 However, no specific drug exists to manage

WIRI, emphasizing the need for further investigation. The objective

of this study was to clarify the molecular mechanism of WIRI and

identify therapeutic targets.

In this study, we  analyzed human peripheral lung tissue biop-

sies collected 30 min  after reperfusion. Five matched cases each

of DCD and DBD lung transplantation were selected from a  Span-

ish institutional database. The transplantations were performed

between May  2020 and December 2020. As shown in  Supplemental

Table 1,  donor factors were matched for gender, age, and cause of

death, and recipient factors were matched for gender, age, diagno-

sis, operative procedure, and perioperative outcome. H&E staining

revealed that nuclear fragmentation was more pronounced in DCD

lungs than in DBD lungs, indicating more evident DNA damage in

DCD lungs (Supplemental Fig. 1A). This finding was  supported by

a TUNEL assay, which showed significantly higher TUNEL-positive

cells in DCD lungs (p = 0.0159) (Supplemental Fig. 1C), suggesting

differences in DNA damage status due to IRI between DCD and DBD

lungs.

To understand the histological features of lung transplantations

from DBD and DCD at molecular level, we conducted dynamic tran-

scriptome analysis using RNA sequencing. Principal component

analysis (PCA) demonstrated distinct RNA expression distributions

between DBD and DCD lungs (Fig. 1A). Genes related to cell cycle

and DNA damage and repair, such as PCNA, CCNA2, CDC25A, CDK1,

and BRCA1, were more highly expressed in DCD lungs than in

DBD lungs, while inflammation-related genes like MMP9, IFN-

�,  IL-1�, IL-6, and CXCL-8 were more prominent in DBD lungs

(Fig. 1B). Canonical pathway analysis further examined pathways

associated with differentially expressed genes, revealing distinct

pathways activated in  DBD and DCD lungs (Fig. 1C). Specifically,

genes associated with the Cell Cycle Control of Chromosomal Repli-

cation and Kinetochore Metaphase Signaling pathways were highly

enriched in DCD lungs. Supplemental Figs. 2 and 3 show signal maps

with upregulated genes in  these pathways. Conversely, TREM1

signaling and the role of IL-17F in allergic inflammatory airway

diseases were significantly upregulated in  DBD lungs, as visual-

ized in Supplemental Fig. 4. These findings underscore distinct gene

expression profiles in DCD and DBD lungs, particularly in  DNA  dam-

age  response and inflammatory signaling, respectively.

Further upstream analysis using IPA (Ingenuity® Pathway Anal-

ysis) clarified the clustering of RNA-sequencing data, identifying

FOXM1, CKAP2L, E2F1, and PCLAF as upstream signals activated in

DCD lungs (Supplemental Fig. 5). These signals are closely related

to DNA damage and replication. Immunohistochemistry with anti-

�H2AX antibody was used to quantify DNA damage at the protein

level, with significantly more �H2AX-positive nuclei in DCD than

in DBD lungs (Fig. 2). �H2AX-positive nuclei were significantly

more in  the DCD lungs than DBD lungs. �H2AX is  a critical indica-

tor of cellular response to  DNA damage, particularly double-strand

breaks,12–14 contributing to  DNA repair, cell cycle regulation, and

programmed cell death. While �H2AX is a  sensitive DNA dam-

age marker, no therapeutic agents targeting �H2AX have been

reported, including in organ transplantation or  cancer.

To evaluate DNA replication levels in  transplanted lungs, we

quantified PCNA expression via immunofluorescence (Fig.  2). DCD

lungs showed significantly more PCNA-positive cells than DBD

lungs, indicating increased DNA replication. While cells routinely

repair DNA damage caused by various stimuli, reactive oxygen

species can induce DNA damage that activates poly ADP-ribose

polymerase (PARP), which both repairs DNA and, under oxidative

stress, promotes apoptosis and necrosis.15 Prior research by  Hat-

achi et al. demonstrated that PARP inhibitors reduced inflammation

and tissue damage in WIRI using a  rat hilar clamp model.16

Despite limited studies on DNA repair targeting pulmonary

IRI, Tan et al. reported that mitochondria-targeted administra-

tion of 8-oxoguanine DNA glycosylase-1 (OGG1), involved in DNA

repair, suppressed IRI in a  rat ex vivo model.17 They observed

that OGG1 reduced mitochondrial DNA damage and decreased pro-

inflammatory mitochondrial DNA fragments in lung perfusate. Ex

vivo lung perfusion (EVLP) may  offer a practical approach for DNA

repair in DCD lungs. While stem cell, mesenchymal cell, and gene

therapies are also potential treatments for DNA repair, no  studies

have demonstrated that these technologies improve transplanted

lung function.

In  DBD lungs, IFN-�  and IL-1� signaling were identified as

upstream pathways (Supplemental Fig. 5), with MMP9  and CXCL-
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Fig. 1. Differences between lung transplantation from DBD and DCD by  dynamic transcriptome analysis with RNA sequencing. (A) The  distribution of RNA expressions in

DBD  and DCD lungs by  principal component analysis. (B) Volcano plot represents genes highly expressed in each of DBD and DCD lungs. (C)  Canonical pathway analysis

represents pathways activated in DCD or DBD lungs. Orange: activation in DCD; blue: activation in DBD.

2 showing strong upregulation among inflammation-associated

genes. Immunofluorescence analysis confirmed significantly more

MMP9-positive cells in DBD than in DCD lungs (Fig. 2).

Disease and function analysis via IPA was conducted to

investigate associations with previously published evidence

(Supplemental Fig. 5). DCD lung had high homology to colorectal

tumor and neoplasm, colorectal lesion, hereditary connective tissue

disorder, and alignment of chromosomes. On the other hand, DBD

lungs had high homology to the cell movement of phagocytes and

myeloid cells, adhesion of immune cells, leukopoiesis, and recruit-

ment of granulocytes. Cancer research has recently advanced

therapeutic approaches targeting DNA damage responses,18,19

which may  also be applied to DCD lung transplantation.

To our knowledge, this is the first study to analyze clinical DCD

lung transplant specimens using RNA sequencing and immunoflu-

orescence validation. Kang et al. previously employed microarrays

to  reveal differences in  gene expression profiles between DBD

and DCD lungs pre-transplant, with a notable reduction in  these

differences post-transplant.4 Further, their recent study on pre-

transplant DBD and DCD lungs identified distinct transcriptomic

signatures: DBD lungs displayed elevated inflammatory cytokine

expression, while DCD lungs had signatures linked to  cell death,

apoptosis, and necrosis.20 While consistent with our findings, our

study provides the first RNA-sequencing and immunofluorescence

validation data for DCD lungs.

In conclusion, clinical lung tissues from DCD lung transplants

exhibit significantly different gene expression profiles compared to

DBD transplants. A combination of histological and transcriptomic

analyses highlighted upregulation of DNA damage and replication

signaling in  DCD lungs, identifying DNA damage and replication

as potential therapeutic targets for WIRI in  DCD lung transplanta-

tion.
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Fig. 2. Immunofluorescence staining of �H2AX, PCNA, and MMP9  in DCD and DBD lungs. Representative immunofluorescence staining of �H2AX, PCNA, and MMP9 in  DCD

and  DBD lungs, and number of �H2AX, PCNA, and MMP9  positive cells in  DCD and DBD lungs. Data and bars are expressed as plots and medians (n  =  5).
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