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High-flow therapy (HFT) has emerged as a promising option to improve 
oxygenation and comfort acute respiratory failure patients (1). By generating positive 
end-expiratory pressure (PEEP), enhancing dead space washout, and reducing airway 
resistance, HFT has demonstrated benefits for respiratory mechanics (2,3). 
Furthermore, it provides controlled humidity and temperature, which promotes 
tracheobronchial clearance, critical for managing chronic respiratory disease (4,5). 
Recognizing these advantages, home-based HFT devices have been developed for 
patients with chronic conditions, using either integrated blower-humidification systems 
similar to positive airway pressure devices or non-invasive ventilators (NIV) with an HFT 
mode. This study aimed to compare mucus clearance, humidification performance, and 
respiratory mechanics between dedicated HFT devices and adapted NIV (6,7). 

 
We conducted a high-fidelity bench study connecting an ASL 5000 mechanical 

lung, a 15cm silicone rubber trachea, and a 3D-printed airway model (8-10) (Figure 1). 
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Two respiratory profiles were tested: obstructive (RawI 20 cmH2O·s/L, RawE 25 
cmH2O·s/L, compliance 50 mL/cmH2O) and restrictive (RawI 8 cmH2O·s/L, RawE 5 
cmH2O·s/L, compliance 30 mL/cmH2O). Functional residual capacity was set at 0.5 L, 
respiratory rates ranged from 14 to 18 bpm, and inspiratory effort was standardized to 
a P0.1 of 2 cmH2O (11). Humidity and temperature were measured at the trachea using 
Vaisala HMP110 sensors. Airflow was recorded with a Fleisch pneumotachograph and a 
Validyne pressure transducer. For mucus clearance assessment, 5mL of artificial mucus 
(2% polyethylene glycol-based) were applied 5cm distal to the trachea (12,13). We 
tested two dedicated devices: Airvo2 (Fisher & Paykel Healthcare, Auckland, NZ) and 
LumisHFT (ResMed, San Diego, CA, USA), and two NIV with HFT mode: EO-150 (EOVE, 
Pau, FR) and PrismaVent-50C (Löwenstein Medical, Bad Ems, DE), paired with a MR810 
humidifier (Fisher & Paykel Healthcare) as per manufacturer recommendations. All 
devices used M-size nasal cannulas (Fisher & Paykel Healthcare) covering 70% of the 
nares.  
 Experiments were conducted without any HFT device (control condition) and 
with each device set at 30 L/min and 37°C, with the mannequin’s mouth closed to 
minimize leaks. Mucus movement was recorded over eight hours (ImageJ software, 
NHS), with velocity and displacement measured. Positive and negative movement 
indicates displacement towards the mouth and the lungs, respectively. Humidification 
and respiratory mechanics were assessed under different flow rates (10–60 L/min), 
temperatures (31, 37°C) and open or closed-mouth scenarios. 

Both dedicated and adapted devices promoted significantly greater mucus 
displacement compared to spontaneous breathing (26.03 [14.97; 37.91] mm and 16.72 
[12.10; 20.94] mm vs. -6.72 [-12.87; -1.73] mm; p<0.001), with dedicated devices being 
more effective (p=0.03). Mucus velocity did not differ significantly between devices 
(dedicated: 0.062 [0.041; 0.229] mm/min and adapted: 0.041 [0.008; 0.235] mm/min). 
However, velocities were significantly higher compared to spontaneous breathing (-
0.024 [-0.056; 0.003] mm/min; p = 0.002 and p = 0.007; respectively). (figure 2A). Mucus 
displacement remained stable over the time without differences between devices 
(figure 2B). 

 
Humidification showed higher maximum and mean relative humidity (RHmean) for 

dedicated devices (p<0.001). Dedicated devices delivered an 11.72% higher RHmean. At 
higher flow rates (50 and 60 L/min),  RHmean decreased, while higher temperatures (37°C) 
and closed-mouth conditions improved RHmean. Mean absolute humidity (AHmean) levels 
were similar between devices, though dedicated devices achieved slightly higher AHmean 
(+1.5 mgH2O/L). Temperature decreased by -1.80 °C with open-mouth conditions 
(p<0.0001), whereas flows above 50 L/min were correlated with higher temperatures (β 
2.45 °C; p<0.001).  
 Respiratory mechanics showed no significant differences between device types. 
However, higher flow rates were associated with increased PEEP and reduced WOB. 

 
This study overcomes some limitations in assessing mucus clearance, which 

often rely on surrogate endpoints. Hasani et al. (14) demonstrated the positive impact 
of HFT on mucociliary clearance in bronchiectasis patients, but aerosol deposition 
techniques may lack specificity. Our artificial mucus model, validated in critical care 
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settings (12,13), enabled an objective evaluation of mucus velocity, a key parameter that 
may be impaired by humidity or temperature fluctuations, leading to 
bronchoconstriction and reduced ciliary function (15). These changes are particularly 
detrimental in chronic respiratory conditions like COPD and bronchiectasis, where 
compromised mucociliary clearance increases the risk of infection and hospitalization 
(2,16). Furthermore, Diaz et al. (17) reported that mucus plugs in lung segments 
correlate with increased mortality in COPD patients, with the risk rising as the number 
of affected segments increased. Enhanced clearance observed in our study suggests that 
HFT devices may contribute to reducing occurrence of exacerbations, and potentially 
improving long-term outcomes in these patients. 

Optimal duration of HFT to enhance mucociliary clearance remains uncertain. In 
our study, an increase in mucus velocity was observed within the first 30 minutes, 
aligning with Kelly et al. (5). Their in-vitro study demonstrated a 15% increase in mucus 
velocity (9.8 ± 0.2 mm/min, p<0.05) within 15 minutes of HFT at 20 L/min with nebulized 
isotonic saline, strongly correlated with airway surface liquid height (R²=0.93). Similarly, 
our study showed higher mucus velocity with dedicated devices between 6 and 8 hours 
(Airvo2: 0.06 mm/min; LumisHFT: 0.07 mm/min). These findings are supported by 
Nagata et al. (18), where patients using HFT for 7.3 ± 3.0 hours daily experienced 
reduced exacerbation rates (adjusted mean difference [95% CI]: 2.85 [1.48–5.47]) and 
prolonged exacerbation-free periods. This reduction may be attributed to improved 
mucus clearance, further corroborating our results. 

Scant evidence exists regarding optimal AH levels in non-invasive respiratory 
supports, especially for HFT. A bench study by Delorme et al. showed AH for Airvo2 
ranging from 41.8±3.9 mgH2O/L at 10–15 L/min to 38.8±1.0 mgH2O/L at 50–60 L/min 
(19). The differences between their findings and ours may stem from wider compliance 
and resistance ranges, diverse clinical scenarios, and higher leaks (open vs. closed 
mouth) simulated in our study, which directly impacted hygrometry and complicated 
comparisons. Notably, our results align closely with Lellouche et al., who reported AH of 
29.4±1.9 mgH2O/L without leaks and 27.7±2.7 mgH2O/L with leaks during NIV in healthy 
subjects (20), confirming the reproducibility of our bench model. 

This bench study has limitations. First, we did not simulate varying inspiratory 
efforts, which could influence mucus clearance. Second, the simplified tracheal model 
does not consider the physiological complexities of distal airways, ciliary function, or 
regional humidity and temperature variations. Additionally, despite using the highest 
temperature settings, we recorded lower temperatures. This may result from heat loss 
in the bench model. Finally, we used room air (FIO2 0.21) but different gas mixtures may 
affect humidification performance. These findings require validation in clinical settings.  
 

In conclusion, dedicated HFT devices demonstrated superior mucus clearance 
compared to adapted NIV devices with HFT mode, highlighting the importance of device 
selection in optimizing patient outcomes. Dedicated devices also maintained better 
humidity and temperature control, although respiratory mechanics were similar across 
devices. Our artificial mucus model offers a novel approach to objectively assess HFT's 
impact on mucus clearance. These findings may inform clinical strategies for managing 
chronic respiratory diseases.  
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FIGURES: 
 

 

Figure 1: Bench experimental setup. From left to right: HFT device to be tested, 

flowmeter and pressure sensor on the circuit, manikin head with nasal cannula, silicone 

trachea with hygrometric sensors and synthetic mucus, AGEC protective balloon, 

mechanical lung.  

2A)     2B) 

               
 

 
 
 
Figure 2: Mucus velocity (mm/min) (2A) assessed during spontaneous breathing, 
treatment with dedicated devices and adapted non-invasive ventilation devices, and 
cumulative mucus displacement (mm) per device (2B). mm/min: millimeters per minute; 
SB: spontaneous breathing. 
 


