ARTICLE IN PRESS

Archivos de Bronconeumología xxx (xxxx) xxx-xxx

ARCHIVOS DE Bronconeumología

www.archbronconeumol.org

Discussion Letter

A Commentary on 'Effect of the Antibody-Mediated Immune Responses on COPD, Asthma, and Lung Function: A Mendelian Randomization Study'

To the Director,

We carefully read the article by Xu et al. published in *Archivos de Bronconeumología*.¹ The authors used Mendelian randomization (MR) to explore the relationship between antibody-mediated immune responses and chronic obstructive pulmonary disease (COPD), asthma, and lung function. This MR study identified 20 antibody-mediated immune responses with significant causal relationships to COPD, asthma, and certain lung function indicators. These findings provide a new perspective on understanding the genetic association between antibody-mediated immune responses and respiratory disease risk, offering genetic evidence for the prevention and treatment of COPD and asthma. We sincerely appreciate this innovative study, but would like to share some different perspectives on the research.

We believe that the methodology of this study still requires further improvement. Specifically, regarding the sample source, there may be overlap between the exposure and outcome data, which could introduce bias in the causal inference of the study. First, for the exposure data, Xu et al. used the GWAS summary statistics of antibody-mediated immune responses provided by Butler-Laporte et al.² This data originates from the genetic analysis of 20 types of microbiome antibody levels in 9724 British adults from the UK Biobank (UKB) database. However, for the outcome data, Xu et al. also used GWAS data from the UKB database,³ including COPD, emphysema, bronchiectasis and asthma. Furthermore, for lung function-related indicators, including forced expiratory volume in 1-second (FEV₁), forced vital capacity (FVC) and FEV₁/FVC, Xu et al. referenced the largest global GWAS data from 49 cohorts. However, 320.656 individuals (67% of the total sample) in this GWAS data also come from the UKB. This suggests that the MR results may still be primarily driven by data from the UKB.

MR is a powerful research method used to distinguish causal relationships, particularly demonstrating unique advantages when causal relationships cannot be clearly identified due to potential confounding bias in observational studies. However, the reliability of its results depends on strict adherence to a series of methodological assumptions, including the statistical independence of exposure and outcome data. Since both the exposure and some of the outcome data come from the UK Biobank, and most of the samples for lung function analysis are also from this database. If there is sample overlap, it could lead to significant bias in the MR analysis and a high type I error rate, resulting in an overestimation of causal relationships.⁴ Previous studies have shown that when the sample overlap is low and the instrumental variable strength is high,

its impact on the study conclusion may be limited.⁵ Therefore, we recommend that the authors calculate the sample overlap between exposure and outcome to assess its potential impact on the study conclusions.

To enhance the robustness and reliability of the study results, we repeated the analysis in an independent external cohort. We used the recently released FinnGen R12 database (https://www.finngen.fi/en/access_results), which provides highquality, UKB-independent samples that can be used for validation analysis, thus avoiding potential bias from sample overlap. In this analysis, we used the same exposure data as Xu et al., which is the GWAS summary statistics of antibody-mediated immune responses. For the outcomes, we used the GWAS data for COPD (*N*=433,208) and asthma (*N*=301,060) from the FinnGen R12 database. Additionally, we used the GWAS data for FEV₁/FVC (N=51,396) and FEV₁ (N=44,671) from the Within Family GWAS Consortium. For the data analysis, we selected SNPs significantly associated with immune response levels (P < 1E - 05) according to the standards of Xu et al. To remove linkage disequilibrium, we also used the standard of $r^2 = 0.001$, kb = 10,000. Additionally, SNPs related to outcome variables were excluded (P < 1E - 05).

All results are detailed in Fig. 1. The results show that, after false discovery rate adjustment, only the level of anti-toxoplasma gondii IgG seropositivity remained significantly negatively associated with FEV₁/FVC. When false discovery rate adjustment was not applied to the P-values, we found that Epstein-Barr virus VCA p18 antibody levels, toxoplasma gondii p22 antibody levels, antichlamydia trachomatis IgG seropositivity, anti-helicobacter pylori IgG seropositivity, and helicobacter pylori catalase antibody levels were associated with COPD; Anti-Toxoplasma gondii IgG seropositivity, anti-human herpes virus 6 IE1A IgG seropositivity, anti-bk polyomavirus IgG seropositivity and toxoplasma gondii p22 antibody levels were associated with asthma; Helicobacter pylori cagA antibody levels were associated with FEV₁; and Toxoplasma gondii p22 antibody levels, anti-herpes simplex virus 2 IgG seropositivity, and helicobacter pylori UREA antibody levels were associated with FEV₁/FVC, indicating potential causal relationships.

Similar to the results of Xu et al., we also found potential causal relationships between Epstein–Barr virus VCA p18 antibody levels and toxoplasma gondii p22 antibody levels with COPD. However, we did not observe any significant statistical differences for the remaining results of Xu et al., and we additionally identified three new results: Anti-chlamydia trachomatis IgG seropositivity, anti-helicobacter pylori IgG seropositivity, and helicobacter pylori catalase antibody levels. For the MR analysis of asthma, FEV₁, and FEV₁/FVC, we did not obtain the same results as Xu et al., and most of the results did not pass the false discovery rate test.

In conclusion, we greatly admire the efforts of Xu et al. in exploring the causal relationship between immune responses and respiratory diseases. This provides new insights for further

https://doi.org/10.1016/j.arbres.2024.11.016

0300-2896/© 2024 SEPAR. Published by Elsevier España, S.L.U. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Please cite this article as: X. Chen, D. Li and Z. Ma, A Commentary on 'Effect of the Antibody-Mediated Immune Responses on COPD, Asthma, and Lung Function: A Mendelian Randomization Study', Archivos de Bronconeumología, https://doi.org/10.1016/j.arbres.2024.11.016

X. Chen, D. Li and Z. Ma

Epstein-Barr virus VCA p18 antibody levels	COPD		37	0.94(0.90 to 0.98)	-0.059	0.008	0.233
Toxoplasma gondii p22 antibody levels	COPD		38	1.02(1.00 to 1.04)	0.021	0.014	0.286
Anti-chlamydia trachomatis IgG seropositivity	COPD	H	19	0.97(0.95 to 1.00)	-0.028	0.032	0.453
Anti-helicobacter pylori IgG seropositivity	COPD	<u>}</u>	16	1.04(1.00 to 1.08)	0.039	0.037	0.453
Helicobacter pylori Catalase antibody levels	COPD		17	0.97(0.93 to 1.00)	-0.035	0.046	0.474
Anti-Toxoplasma gondii IgG seropositivity	Asthma		19	1.03(1.01 to 1.06)	0.034	0.003	0.169
Anti-human herpes virus 6 IE1A IgG seropositivity	Asthma	H-	21	0.97(0.95 to 0.99)	-0.032	0.007	0.233
Anti-BK polyomavirus IgG seropositivity	Asthma	н	14	0.99(0.97 to 1.00)	-0.014	0.019	0.357
Toxoplasma gondii p22 antibody levels	Asthma	H	38	1.02(1.00 to 1.03)	0.015	0.035	0.453
Helicobacter pylori CagA antibody levels	FEV1	H-	15	0.98(0.96 to 0.99)	-0.024	0.012	0.273
Anti-Toxoplasma gondii IgG seropositivity	FEV1/FVC	H	14	0.97(0.96 to 0.99)	-0.028	< 0.001	0.026
Toxoplasma gondii p22 antibody levels	FEV1/FVC	H	26	0.98(0.97 to 0.99)	-0.018	0.001	0.057
Anti-herpes simplex virus 2 IgG seropositivity	FEV1/FVC	141	13	0.98(0.96 to 0.99)	-0.021	0.007	0.233
Helicobacter pylori UREA antibody levels	FEV1/FVC		19	0.98(0.96 to 1.00)	-0.022	0.042	0.453
Non-significant results		1					
Herpes simplex virus 2 mgG-1 antibody levels	COPD		17	0.98(0.96 to 1.00)	-0.020	0.102	0.596
Human herpes virus 6 IE1A antibody levels	COPD		24	0.96(0.91 to 1.01)	-0.044	0.105	0.596
Epstein-Barr virus EBNA-1 antibody levels	COPD		23	0.97(0.93 to 1.01)	-0.034	0.121	0.596
Chlamydia trachomatis PorB antibody levels	COPD	H	76	1.00(1.00 to 1.01)	0.004	0.190	0.665
Epstein-Barr virus ZEBRA antibody levels	COPD	1	33	1.03(0.98 to 1.08)	0.029	0.203	0.684
Varicella zester virus alveoprateiros E and Lantibedy level	COPD		24	0.98(0.94 to 1.02)	-0.024	0.201	0.099
Cutomogolouique pp150 aptibodu lougle	CORD		21	1.02(0.92 to 1.02)	-0.020	0.204	0.767
Apti-horpes eimelex visus 2 laC ecrepositivity	COPD		17	1.02(0.98 to 1.08)	-0.011	0.295	0.707
Halieshaster aderi LIDEA antibedu levele	COPD		21	0.99(0.97 to 1.01)	-0.011	0.345	0.775
Anti-Texenleeme gendii IgC eeropeeitivity	COPD		10	1.01(0.00 to 1.01)	-0.013	0.347	0.775
Anti-human hernes virus 6 InC seropositivity	COPD		16	0.99(0.97 to 1.04)	-0.002	0.380	0.775
Cytomenalovirus nn52 antihody levels	COPD		24	0.97(0.92 to 1.01)	-0.008	0.304	0.775
Chlamydia trachomatis tarn-D E2 antihody levels	COPD		24	0.99(0.92 to 1.03)	-0.012	0.594	0.844
Cytomenalovirus pp28 antihodu lovele	COPD	1	20	0.98(0.94 to 1.03)	-0.012	0.539	0.844
Chlamydia trachomatis nGP3 antihodu lauale	COPD		20	0.99(0.96 to 1.03)	-0.000	0.530	0.864
BK polyomavirus VP1 antibody levels	COPD		24	0.99(0.94 to 1.05)	-0.009	0.791	0.907
Helicobacter pylori OMP antihody lavale	COPD	1	16	1.01(0.96 to 1.05)	900.0	0.798	0.907
Anti-Epstein-Barr virus InG seronositivity	COPD	1	12	1.00(0.98 to 1.03)	0.001	0.872	0.943
Anti-polyomavirus 2 IoG seropositivity	Asthma	1	16	1.03(1.00 to 1.02)	0.001	0.054	0.481
Polyomavirus 2 JC VP1 antibody levels	Asthma		27	1.04(1.00 to 1.00)	0.040	0.064	0.516
Chlamydia trachomatis momo D antibody levels	Asthma		10	1.02(0.99 to 1.05)	0.021	0.115	0.596
Varicella zoster virus glycoproteins E and I antibody level	sAsthma		22	0.97(0.92 to 1.01)	-0.034	0.135	0.607
Anti-human hernes virus 7 IaG seronositivity	Asthma	H	19	1 01(1 00 to 1 02)	0.007	0 157	0.658
Cytomegalovirus pp28 antibody levels	Asthma		20	1.03(0.98 to 1.09)	0.034	0.181	0.665
Chlamydia trachomatis tarp-D F1 antibody levels	Asthma	-	24	1.01(0.99 to 1.03)	0.013	0.184	0.665
Helicobacter pylori CagA antibody levels	Asthma	<u> </u>	15	0.98(0.96 to 1.01)	-0.016	0.187	0.665
Human herpes virus 6 p101k antibody levels	Asthma	,	21	0.99(0.96 to 1.01)	-0.014	0.192	0.665
Merkel cell polyomavirus VP1 antibody levels	Asthma		24	0.98(0.94 to 1.01)	-0.024	0.228	0.699
Helicobacter pylori VacA antibody levels	Asthma		21	0.99(0.97 to 1.01)	-0.012	0.278	0.763
Cytomegalovirus pp150 antibody levels	Asthma		22	1.02(0.98 to 1.05)	0.018	0.296	0.767
Helicobacter pylori OMP antibody levels	Asthma		14	0.98(0.94 to 1.02)	-0.019	0.330	0.775
Herpes simplex virus 2 mgG-1 antibody levels	Asthma		17	0.99(0.97 to 1.01)	-0.011	0.339	0.775
Chlamydia trachomatis tarp-D F2 antibody levels	Asthma		22	0.99(0.95 to 1.02)	-0.014	0.394	0.775
Helicobacter pylori UREA antibody levels	Asthma	1	22	1.01(0.98 to 1.04)	0.013	0.399	0.775
Anti-Epstein-Barr virus IgG seropositivity	Asthma	i.	12	1.01(0.99 to 1.02)	0.007	0.428	0.787
Anti-herpes simplex virus 2 IgG seropositivity	Asthma	H	17	0.99(0.97 to 1.01)	-0.008	0.448	0.792
Epstein-Barr virus EBNA-1 antibody levels	Asthma		22	1.02(0.97 to 1.07)	0.017	0.495	0.837
Anti-Merkel cell polyomavirus IgG seropositivity	Asthma		19	1.01(0.98 to 1.03)	0.007	0.612	0.872
Anti-varicella zoster virus IgG seropositivit	Asthma		16	1.00(0.98 to 1.03)	0.004	0.749	0.907
Human herpes virus 6 IE1A antibody levels	Asthma		24	0.99(0.94 to 1.05)	-0.008	0.767	0.907
Helicobacter pylori Catalase antibody levels	Asthma	1.1	17	1.00(0.97 to 1.02)	-0.002	0.846	0.938
Herpes simplex virus 1 mgG-1 antibody levels	Asthma		31	1.00(0.96 to 1.03)	-0.002	0.914	0.961
BK polyomavirus VP1 antibody levels	FEV1		18	1.04(1.00 to 1.09)	0.043	0.054	0.481
Anti-BK polyomavirus IgG seropositivity	FEV1		9	1.01(1.00 to 1.02)	0.009	0.125	0.596
Toxoplasma gondii sag1 antibody levels	FEV1	\mapsto	30	0.98(0.96 to 1.00)	-0.017	0.126	0.596
Anti-varicella zoster virus IgG seropositivit	FEV1	H-	13	1.01(1.00 to 1.03)	0.013	0.131	0.602
Chlamydia trachomatis tarp-D F1 antibody levels	FEV1	H	19	0.99(0.97 to 1.01)	-0.013	0.165	0.658
Helicobacter pylori Catalase antibody levels	FEV1	H-1	13	0.98(0.96 to 1.01)	-0.017	0.168	0.658
Human herpes virus 6 IE1B antibody levels	FEV1		22	0.98(0.95 to 1.02)	-0.017	0.319	0.775
Anti-herpes simplex virus 2 IgG seropositivity	FEV1	- <u>+</u> +	13	0.99(0.97 to 1.01)	-0.008	0.389	0.775
Helicobacter pylori GroEL antibody levels	FEV1		10	0.98(0.93 to 1.03)	-0.019	0.486	0.836
Cytomegalovirus pp28 antibody levels	FEV1		12	0.99(0.94 to 1.03)	-0.013	0.542	0.844
Anti-human herpes virus 6 IgG seropositivity	FEV1	÷	13	1.00(0.99 to 1.02)	0.004	0.550	0.844
Cytomegalovirus pp52 antibody levels	FEV1	H-1	19	1.01(0.98 to 1.04)	0.008	0.616	0.872
Human herpes virus 6 p101k antibody levels	FEV1		18	1.00(0.98 to 1.03)	0.004	0.674	0.907
Epstein-Barr virus ZEBRA antibody levels	FEV1		28	1.01(0.97 to 1.04)	0.007	0.724	0.907
Epstein-Barr virus EBNA-1 antibody levels	FEV1	H-1	17	0.99(0.95 to 1.04)	-0.006	0.768	0.907
Herpes simplex virus 1 mgG-1 antibody levels	FEV1/FVC	<u> </u>	26	1.02(1.00 to 1.04)	0.020	0.100	0.596
Anti-helicobacter pylori IgG seropositivity	FEV1/FVC	H	13	0.99(0.97 to 1.00)	-0.014	0.104	0.596
Toxoplasma gondii sag1 antibody levels	FEV1/FVC	H	30	0.99(0.97 to 1.00)	-0.014	0.107	0.596
Epstein-Barr virus EBNA-1 antibody levels	FEV1/FVC	÷	17	1.02(0.99 to 1.06)	0.025	0.115	0.596
Anti-human herpes virus 6 IgG seropositivity	FEV1/FVC	1	13	1.01(1.00 to 1.02)	0.008	0.168	0.658
Chlamydia trachomatis momp D antibody levels	FEV1/FVC	1.40	8	0.99(0.97 to 1.01)	-0.013	0.204	0.684
Cytomegalovirus pp150 antibody levels	FEV1/FVC		14	1.02(0.99 to 1.05)	0.019	0.238	0.699
BK polyomavirus VP1 antibody levels	FEV1/FVC	1	18	1.02(0.99 to 1.05)	0.020	0.243	0.699
Human herpes virus 6 IE1A antibody levels	FEV1/FVC	1	18	1.02(0.98 to 1.05)	0.019	0.295	0.767
Helicobacter pylori VacA antibody levels	FEV1/FVC	H-H	14	0.99(0.98 to 1.01)	-0.008	0.309	0.775
Varicella zoster virus glycoproteins E and I antibody level	sFEV1/FVC		17	1.02(0.98 to 1.06)	0.020	0.337	0.775
Anti-numan herpes virus 6 IE1A IgG seropositivity	FEV1/FVC	H	17	0.99(0.98 to 1.01)	-0.007	0.370	0.775
Polyomavirus 2 JC VP1 antibody levels	FEV1/FVC		23	0.99(0.96 to 1.01)	-0.011	0.383	0.775
chiamydia trachomatis momp A antibody levels	FEV1/FVC	H	26	1.00(0.99 to 1.00)	-0.004	0.390	0.775
Anti-cytomegalovirus IgG seropositivity	FEV1/FVC		12	0.99(0.97 to 1.01)	-0.010	0.400	0.775
Human nerpes virus 7 U14 antibody levels	FEV1/FVC		16	1.02(0.98 to 1.06)	0.017	0.417	0.787
cytomegalovirus pp52 antibody levels	FEV1/FVC		19	1.01(0.98 to 1.04)	0.010	0.432	0.787
Helicobacter pylori CagA antibody levels	FEV1/FVC	Here a	15	0.99(0.98 to 1.01)	-0.007	0.445	0.792
Epstein-Barr virus ZEBRA antibody levels	FEV1/FVC		28	0.99(0.97 to 1.02)	-0.007	0.542	0.844
Cytomegalovirus pp28 antibody levels	FEV1/FVC		12	0.99(0.95 to 1.03)	-0.012	0.582	0.864
Helicopacter pylori Catalase antibody levels	FEV1/FVC	1	13	1.00(0.98 to 1.01)	-0.005	0.593	0.864
Epstein-Barr virus VCA p18 antibody levels	FEV1/FVC		29	1.01(0.98 to 1.03)	0.006	0.692	0.907
numan nerpes virus 6 IE1B antibody levels	FEV1/FVC		22	0.99(0.97 to 1.02)	-0.006	0.701	0.907
Anti-RK networkey in the second state	ALC: NOT A DEMOCRATIC	1 1-14	9	1.00(0.99 to 1.01)	-0.002	U./10	0.907
Anti-BK polyomavirus IgG seropositivity	FEVINIVO	<u> </u>	40	0.0000.000	0.000		0.0

Archivos de Bronconeumología xxx (xxxx) xxx-xxx

Fig. 1. Forest plot of the MR analysis results for antibody-mediated immune responses and respiratory diseases. All results were obtained using the inverse-variance weighted method. COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1-second; FVC, forced vital capacity; MR, Mendelian randomization; FDR, false discovery rate; CI, confidence interval; OR, odds ratio.

ARTICLE IN PRESS

X. Chen, D. Li and Z. Ma

understanding the relationship between immune responses and respiratory diseases. However, we hope that adjusting the sample data sources can further strengthen the conclusions of this study and potentially yield new results to advance the field.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Funding

This study was sponsored by the National Nature Science Foundation of China (Grant number 81700753).

Conflict of Interests

The authors declare that they have no competing interests.

Availability of Data and Materials

All data generated or analyzed during this study are included in this article.

References

1. Guixing X, Yilin L, Huaying F, Fanrong L, Dehua L. Effect of the antibody-mediated immune responses on COPD, asthma, and lung func-

tion: a Mendelian randomization study. Arch Bronconeumol. 2024, http://dx.doi.org/10.1016/j.arbres.2024.10.003. Published online October 22.

Archivos de Bronconeumología xxx (xxxx) xxx-xxx

- Butler-Laporte G, Kreuzer D, Nakanishi T, Harroud A, Forgetta V, Richards JB. Genetic determinants of antibody-mediated immune responses to infectious diseases agents: a genome-wide and HLA association study. Open Forum Infect Dis. 2020;7(11):ofaa450, http://dx.doi.org/10.1093/ofid/ofaa450. Published 2020 Sep 24.
- 3. Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale data. Nat Genet. 2021;53(11):1616–21, http://dx.doi.org/10.1038/s41588-021-00954-4.
- 4. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40(7):597–608, http://dx.doi.org/10.1002/gepi.21998.
- Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84, http://dx.doi.org/10.1093/aje/kwt084.

Xi Chen^{a,b}, Danpei Li^{a,b}, Zhiqiang Ma^{c,*}

^a Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

^b Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China

^c Division of Cardiology, Department of Internal Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Corresponding author. *E-mail address:* mzzqq888@163.com (Z. Ma).