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Abstract 

In this narrative review, we address the ongoing challenges of lung cancer (LC) screening using chest 

low-dose computerized tomography (LDCT) and explore the contributions of artificial intelligence 

(AI), in overcoming them. We focus on evaluating the initial (baseline) LDCT examination, which 

provides a wealth of information relevant to the screening participant’s health. This includes the 

detection of large-size prevalent LC and small-size malignant nodules that are typically diagnosed as 

LCs upon growth in subsequent annual LDCT scans. Additionally, the baseline LDCT examination 

provides valuable information about smoking-related comorbidities, including cardiovascular disease, 

chronic obstructive pulmonary disease, and interstitial lung disease (ILD), by identifying relevant 

markers. Notably, these comorbidities, despite the slow progression of their markers, collectively 

exceed LC as ultimate causes of death at follow-up in LC screening participants. Computer-assisted 

diagnosis tools currently improve the reproducibility of radiologic readings and reduce the false 

negative rate of LDCT. Deep learning (DL) tools that analyze the radiomic features of lung nodules are 

being developed to distinguish between benign and malignant nodules. Furthermore, AI tools can 

predict the risk of LC in the years following a baseline LDCT. AI tools that analyze baseline LDCT 

examinations can also compute the risk of cardiovascular disease or death, paving the way for 

personalized screening interventions. Additionally, DL tools are available for assessing osteoporosis 

and ILD, which helps refine the individual’s current and future health profile. The primary obstacles 

to AI integration into the LDCT screening pathway are the generalizability of performance and the 

explainability. 

 

Key-words: Artificial Intelligence; Low-dose Computed Tomography; Lung Cancer; Screening 
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1. Lung cancer screening 

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide1. While smoking and age 

are the primary risk factors for LC, making smoking cessation the main preventive measure, two 

randomized clinical trials – the National Lung Screening Trial (NLST)2 in the US and the NELSON3 in 

Europe – have demonstrated that annual screening with low-dose computed tomography (LDCT) 

significantly reduces mortality from LC compared to annual chest X-rays or no screening. 

Consequently, LC screening with annual LDCT is recommended for smokers or former smokers aged 

50-80 years4,5. However, the reduction in LC mortality associated with LDCT screening is modest. A 

meta-analysis of nine trials reported an average relative risk of 0.84 for LC mortality (95% CI: 0.76–

0.92) in LDCT-screened subjects compared to non-screened subjects6. This justifies efforts to 

enhance LC screening with LDCT by addressing its persistent challenges7,8 in selecting subjects for 

screening9-13, improving the LDCT screening examination3,10-18, and incorporating other biomarkers 

from plasma, serum, sputum, or exhaled breath (Table 1)11–17.  

 This article aims to review the established achievements and ongoing efforts in addressing 

some challenges of LC screening through artificial intelligence (AI) applications. Specifically, we focus 

on AI tools that evaluate the baseline LDCT, which is the most crucial examination in the LC screening 

regimen from an individual health perspective. 

 

2. The pivotal role of baseline LDCT for LC screening 

Participants in LC screening programs typically undergo annual LDCT examinations and, if 

abnormalities are found, further tests to diagnose or exclude LC. The baseline (first) LDCT is crucial 

for several reasons. First, most LCs diagnosed during the initial 2-4 annual screening rounds are 

already present in the baseline LDCT. In particular, screen-detected LCs diagnosed within the first 

year following the initial LDCT screening test, defined as prevalent LCs (Fig. 1), are typically more 

numerous (range 55.4%-84%) than those diagnosed after the subsequent annual repeat LDCT 

screening, defined as incident LCs2,3,18–22. Moreover, most (77-80%) incident LCs are already present 

in baseline (or prior) LDCT scans20,23 (Fig. 1). However, these “pseudo-incidental” LCs require time to 
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grow and reach a size threshold that qualifies them as suspicious or actionable nodules, and can 

ultimately be diagnosed as LCs only years after their appearance. The combination of prevalent and 

“pseudo-incidental” LCs allows the retrospective identification of malignant lesions in the baseline 

LDCT in up to 92% of subjects with screen-detected LCs within the first three-four years of 

screening13,20,24. Awareness of the distribution of screen-detected LCs is essential given the expected 

new start and adoption of LC screening as a population-based intervention in Europe4 and elsewhere. 

Second, baseline LDCT allows the extraction of markers of smoking-related comorbidities, such as 

coronary artery calcifications (CAC) for cardiovascular disease (CVD) and pulmonary emphysema for 

chronic obstructive pulmonary disease (COPD). In particular, pulmonary emphysema can be assessed 

using visual semi-quantitative scales25,26 (Figs. 2 and 3) or quantitatively with the extraction of several 

indices using automatic software, including deep learning (DL) algorithms27–30 (see section 4.3). 

Emphysema is associated with an increased LC incidence31–33, but, more importantly, in the 

perspective of LC screening programs, both CAC and emphysema indices predict long-term overall, 

CVD and respiratory mortality25,34–37 (Figs. 2 and 3). For this reason, in principle, LDCT assessment of 

CAC and emphysema allows for screening regimen personalization9 and early initiation of therapies 

that can delay comorbidities progression. A compelling argument underscoring the pivotal role of 

LDCT is that the assessment of smoking-related disease markers, such as CAC and emphysema 

indices, in the baseline LDCT provides sufficient prognostic information at the individual level. In fact, 

longitudinal studies have shown that only about 15% of subjects with emphysema, who participated 

in LC screening, experienced a mild progression of emphysema itself38. Also the progression of CAC is 

relatively slow, with only one out of five subjects without CAC developing some within 4 to 5 years39. 

Third, changes consistent with interstitial lung abnormalities (ILA) or disease (ILD) are observed in 3-

10% of subjects undergoing baseline LDCT40 (Fig. 5). These changes imply a greater risk of LC and are 

associated with an increased rate of complications from LC treatments41. Detection of these 

abnormalities, especially when they extend to at least 5% of the lung parenchyma, justifies referral to 

a multidisciplinary team to prevent and manage their progression40,42 (Fig. 5). Fourth, the baseline 

LDCT can reveal several additional incidental findings, the most important and frequent being 
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bronchiectasis, consolidations, aortic valve disease, mediastinal masses, enlarged mediastinal or hilar 

lymph nodes, and thyroid abnormalities40. Fifth, eligible subjects often undergo baseline LDCT only 

and then quit the screening program. In fact, in the US, adherence to the recommended screening 

intervals can be as low as 57%, especially among subjects with negative tests or benign nodules43. 

Finally, in the UK LC Screening trial, which offered just one LDCT to eligible subjects of the 

intervention arm44, a decrease in mortality from LC was observed in the screened subjects compared 

to controls (no screening)6. This benefit might be valuable for deprived world areas where limited 

economic resources do not allow serial annual LDCT examinations. 

 

3. Application of AI to baseline LDCT for problem-solving in LC screening  

In the usual screening workflow, each LDCT examinations undergo a double reading by radiologists, 

who meticulously examine them for early signs of cancer45, focusing on the characteristics of the 

pulmonary nodules, including size, morphology, location, and change over time. The LDCT 

examination also allows the opportunistic assessment of smoking-related comorbidities, especially 

emphysema and CVD46. This makes medical image interpretation the cornerstone of LC screening 

activities, requiring significant time and expertise47. With the new USPTF guidelines expanding the 

cohort of eligible individuals for LC screening in the US48, the already high radiologists workload49 is 

expected to increase further, making fully manual reporting of LDCT examinations impractical.  

 In recent years, the integration of AI into healthcare has brought significant changes in LC 

screening practice. By leveraging machine learning (ML) and DL algorithms (see Yu et al.50 for a 

review), researchers and clinicians can efficiently harness the vast amounts of data generated by 

LDCT to address critical challenges in LC screening.  This section explores diverse applications of AI in 

baseline LDCT imaging for problem-solving in LC screening. 

 

3.1 CAD for lung nodules 

Detecting lung nodules in LDCT images is central to LC screening workflows, as it guides participant 

management. However, the repetitive nature of this task and the overwhelming volume of images 
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contribute to high intra- and inter-observer variability and a high false positive rate51,52. Computer-

aided diagnosis (CAD) systems assist radiologists by automatically identifying subtle findings, thereby 

mitigating human limitations like memory, distraction, and fatigue and offering objective data 

interpretation53. Computer-aided detection (CADe) systems are used for detection, while computer-

aided diagnosis (CADx) systems are used for diagnosis51,53. CADe systems have been shown to reduce 

the rate of false-negative baseline LDCT examinations3,54–61. Additionally, they can help detect infra-

threshold nodules that do not qualify as positive according to Lung-RADS62, but need to be monitored 

in subsequent LDCT examinations29. However, only a small fraction (below 1%) of micronodules (<4 

mm) evolve into LC63, indicating that the specificity of a micronodule at baseline LDCT is extremely 

low.  

Using CADe for the computation of lung nodule volume rather than diameters has improved 

classification of nodules and decreased the number of indeterminate or false positive LDCT 

examinations64. However, the clinical integration of CADe remains limited due to persistent concerns 

over high false positive rates65,66. Researchers are addressing this issue through several strategies. 

CADe tools may be used as pre-screening instruments to rule out negative LDCT examinations, 

allowing radiologists to concentrate on more challenging and suspicious cases67,68.  Another strategy 

involves integrating more data into the models. For example, a 'collaborative CAD' system 

incorporating radiologists’ gaze patterns into a 3D multi-task convolutional neural network (CNN), a 

particular DL architecture69, achieved a 97% classification accuracy in identifying nodules70.  

In LC screening, it is crucial to distinguish between benign lung nodules, which constitute the 

vast majority observed in low-dose CT scans of screened subjects according to Lung-RADS v202262, 

and malignant lung nodules. This differentiation often leads to additional examinations, such as 

follow-up LDCTs at intervals of 1-3-6 months, FDG-PET71, and invasive procedures, significantly 

increasing both the costs and potential harms associated with screening7. Notably, malignant 

nodules demonstrate an increase in size, density, or both over subsequent 3 or 6-month follow-up 

LDCT scans, as outlined in Lung-RADS v202262. The calculation of volume doubling time (VDT) serves 

as a practical and effective method to assess nodule growth characteristics and malignancy risk64. 
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The Lung-RADS guidelines recommend specific management strategies for baseline LDCT-detected 

nodules, particularly solid non-calcified nodules ≥6 mm in diameter or ≥113 mm3 in volume, which 

helps streamline further investigations aimed at confirming malignancy and minimizing unnecessary 

procedures72. Furthermore, this differentiation can be enhanced by integrating LDCT features such as 

nodule size and density, the number of nodules, and presence of emphysema, with pertinent subject 

history, as incorporated in the PanCan/Brock models73,74, or with biomarker results such as plasma 

DNA methylation75 or plasma total cfDNA13. However, the PanCan/Brock models have been 

developed, tested, and calibrated specifically for prevalent solid nodules ≥ 6 mm in diameter 73,74,76. 

They may not be well-suited for newly appearing nodules detected at next LDCT screening rounds 76. 

Additionally, these models may not effectively identify malignant micronodules, potentially leading 

to the delayed (“pseudo-incidental”) LC diagnosis. Therefore, DL algorithms predicting LC based on 

baseline LDCT and radiomics77–80 may improve the characterization of these small nodules. For 

example, an ML approach combining epidemiological, clinical and radiomic features, extracted from 

the nodules present at baseline LDCT, was able to predict the nodule’s malignancy risk score with an 

Area Under Receiving Operator Curve (AUROC) of 0.93, outperforming the PanCan/Brock models and 

with optimal performance for both solid and sub-solid nodules81. Still, a generative approach to 

enhance the characterization of indeterminate nodules from the baseline LDCT scan80 exploited a 

growth model based on the Wasserstein generative adversarial network framework (GP-WGAN) to 

predict the nodule growth patterns in the 1-year follow-up LDCT scans. By leveraging the ability of 

GANs to generate data similar to the original, they can simulate follow-up LDCT examinations 

requiring only the baseline LDCT as input. The results demonstrated that the generated follow-up 

nodule images, when used as input to a model for LC malignancy prediction, achieved performance 

comparable to using real follow-up nodule images (AUROC of 0.82±0.02 for generated nodules, 

compared to 0.86±0.02 for real nodules)80. 

 

3.2 LC risk stratification  
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For LC screening to be effective and minimize related harms, it is crucial to carefully select the at-risk 

population49. Once selected, LDCT examination information allows for valuable risk stratification, 

enabling a tailored screening schedule82. Several models for estimating LC risk have incorporated 

baseline LDCT findings83–85. Their implementation is hindered by limited external validation and the 

need for manual input of LDCT findings into the model to calculate the score. Unlike traditional 

models, AI-based algorithms autonomously analyze the entire LDCT volume, identify lung nodules 

and incidental findings, and combine this information with demographic data to generate a 

comprehensive, automated risk score. 

The Google DL model evaluates LDCT examinations to predict LC incidence. It extracts local 

and global features from the current, and optionally prior, LDCT examinations and estimates the 

likelihood of a LC diagnosis within a year86. Despite achieving a high AUROC of 0.959 on single LDCT 

examination and outperforming radiologists, the model was criticized for its ‘black-box’ nature, lack 

of source code availability, and small validation set87.  

DeepScreener is a DL algorithm designed to predict a patient’s cancer status from CT scans 

through three tasks: nodule segmentation, nodule-level classification and patient-level 

classification88. For each nodule, the nodule-level classifier extracts morphological, textural and 

pathological features and combines them with the nodule location to calculate a risk score. 

Subsequently, the patient-level classifier aggregates the risk scores of all detected nodules to 

generate an overall risk score for the patient and determine the label (“cancer” or “no cancer”). The 

model achieved an AUROC of 0.89 and a sensitivity of only 42.4%, indicating that further refinement 

and validation are needed89.  

Sybil, a DL model designed to predict using a 0-1 score the LC risk from a single LDCT 

examination up to the next six years, without the need for radiologist annotations or additional data, 

represents a recent advancement90. It achieved AUROC for LC prediction at one year of 0.86-0.94 in 

three different data sets. Interestingly, when Sybil predicts high LC risk, the used signal localizes to 

specific at-risk regions rather than being equally spread over the entire thorax90.  
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DL algorithms such as Sybil could be used to stratify the risk of LC after a baseline LDCT and 

could be particularly valuable in providing the LC risk in a screened subject showing infrathreshold 

nodules, that correspond to benign or pseudo-incident LC, or, after a negative baseline LDCT, 

anticipating interval or incident LC. Examples of application of the Sybil algorithm are shown in Fig. 4. 

 

3.3 CVD, respiratory and overall mortality prediction 

Tobacco smoking is a well-established risk factor for CVD, COPD, and LC. In LC screening cohorts, 

which primarily include current and former smokers, these conditions are the leading causes of 

death2,3,91,92, and are often referred as the ‘Big 3 killers’. Using AI to extract comorbidity-related 

biomarkers from baseline LDCT images offers a valuable opportunity to enhance LC screening. AI can 

help optimize screening schedules—such as determining when to start, how frequently to screen, 

and when to stop—by refining individual risk profiles9. Although radiologists’ visual scoring of 

comorbidities provides adequate predictive values25,35 (Fig. 2 and 3), AI-derived biomarkers offer 

greater robustness and objectivity, all without increasing the clinician’s workload93. One significant 

proof of this concept is a DL algorithm for the automatic quantification of coronary calcium94. The 

resulting calcium scoring showed a high correlation with readings from expert radiologists and 

demonstrated robust test-retest accuracy94. Beyond using AI-derived CAC as a predictor of CV events 

in LC screening cohorts94–97, researchers are exploring additional approaches. For instance, a model 

was developed that  based on the extraction of the coronary calcium and iuxta-cardiac fat uses a 

single LDCT examination and provides a 0-1 score to estimate the probability of CVD risk98. The 

model’s ability to predict the risk of CVD and CV mortality equalized or surpassed that of radiologists 

and surpassed that of other state-of-the-art DL tools94,98,99. Examples of its application to predict CV 

death in subjects with no or mild CAC are shown in Fig. 5. Other DL-derived indices include the 

prediction of adverse events based on the left atrial volume100 and of CV risk based on epicardial 

adipose tissue amount  alone101. 

COPD is typically diagnosed and evaluated through symptom assessment, spirometric testing, 

and tracking respiratory exacerbations102. While lung densitometry is more reproducible than visual 



Page 10 of 27

Jo
ur

na
l P

re
-p

ro
of

 10 

assessment of emphysema103 and is increasingly used for COPD assessment29,31,104, it is notably 

sensitive to variations in CT scanners and acquisition/reconstruction parameters, such as slice 

thickness, radiation dose, and reconstruction kernel105. A two-step DL model was developed to 

normalize the kernel effect for emphysema quantification in LDCT images 105,106. This tool allows 

accurate emphysema quantification even when images are reconstructed using different kernels, 

thus improving consistency across large screening trials105.  

Combining quantitative and semi-quantitative biomarkers for CVD and COPD in risk 

stratification after LDCT examinations is gaining attention. A logistic regression model that integrates 

participant demographics with LDCT measures of LC, CVD and COPD was developed to predict the 5-

year risk of competing death. This approach helps identify individuals who may benefit more from 

preventive care for other conditions than from LC screening107. The results suggest that a model 

based exclusively on quantitative LDCT measures, even when automatically derived, is suitable for 

calculating risk scores in a LC screening cohort and informing the post-LDCT screening process. 

Similarly, the predictive value of CAC visual score and of densitometry assessment of emphysema 

(Relative Area of the lung with density below -950 Hounsfield Units – RA950) in baseline LDCT along 

with age, gender, smoking status and pack-years were evaluated to predict the overall, LC, and CVD 

mortality in a screening cohort36. Using an ML paradigm based on decision trees108 and the Shap 

framework109 to assess the importance of each feature, the model interpretation revealed that 

RA950 was the first ranking feature for predicting overall and CVD mortality, with AUROC values of 

0.70 and 0.73, respectively. The most important features for predicting LC mortality were pack-years 

and RA950, with an AUROC of 0.61.  

 

3.4 Osteoporosis assessment 

COPD is frequently associated with other extra-pulmonary systemic manifestations, including 

osteoporosis110, that leads to an increased risk of fractures111. Since bone attenuation measured on 

routine chest CT has shown strong correlation with Bone Mass Density (BMD) assessed by dual-
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energy X-ray absorptiometry (DXA) in patients with COPD112, opportunistic DL-aided assessment of 

osteoporosis in LDCT scans in LC screening cohorts has emerged.  

Different approaches have been proposed. A DL model was combined with geometric 

operations to automatically measure BMD from LDCT scans achieving a good agreement with 

quantitative CT113. AI-RAD Companion was evaluated as an end-to-end solution to derive a LDCT 

biomarker for osteoporosis in LC screening whose score moderately correlated with WHO T-scores 

allowing to stratify participants into normal, osteopenia, and osteoporosis categories114. Additionally, 

the combination of ML with radiomics texture analysis of automatically detected vertebral body 

achieved an AUROC of 0.90 and 0.72 on internal and external validation cohorts, respectively115, 

establishing that osteoporosis can be part of the evaluation of LDCT for LC screening with impacts on 

morbidity, mortality, and the overall efficacy of LC screening. 

 

3.5 Classification and prediction of ILD evolution 

Recently, several studies have demonstrated the capability of DL algorithms to help classify the ILD 

detected in full dose thin-section CT116–119 and, more importantly, to predict the progression of the 

disease and the mortality due to this condition120–122. Validation of these algorithms in the LDCT 

examinations performed for LC screening is still required. 

 

Conclusions 

While numerous AI models have been developed for LCS, significant challenges remain that hinder 

their effective integration into clinical practice. Key issues include the generalizability of AI models 

across different populations – complicated by the limited availability of open-access datasets -, the 

explainability of AI decisions47,52,65,123,124, and the assessment of AI tools deployment. These concerns 

have been extensively discussed in recent literature125–129, highlighting the urgent need for ongoing 

research and collaboration in this rapidly evolving field. 
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Table 1. Challenges of LC screening with LDCT 

Main challenge Sub-challenges Options 

Selection of subjects to be 

screened 

 

LC risk stratification 

 

 

Recruitment method 

 

General Practitioner or 

pneumonologist – driven 

 

Self-referral via internet or 

phone 

 

Smoking-related comorbidities 

 

Chronic Obstructive Pulmonary 

Disease 

Cardiovascular Disease 

LDCT screening examination  

 

Frequency 

 

Annual 

Biennal 

Logistic organization Centralized 

Distributed 

Hospital-centered 

Mobile CT units 

Decrease of false negative and 

false positive tests 

 

Validation of ultralow (<1mSv) 

dose acquisitions 

 

Roles of other biomarkers in 

plasma, serum, sputum or 

exhaled breath 

Selection of higher risk 

subjects before LDCT 

 

Differentiation of benign and 

malignant nodules after LDCT 
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Figures and legends 

 

 

Fig. 1 (A-C). Prevalent and pseudo-incidental screen-detected LC at baseline LDCT.  

Stage IA adenocarcinoma in a 60-year-old man from ITALUNG (A) appearing at baseline LDCT as a large 

(26 mm in mean diameter) solid nodule in the right upper lobe (*). Pseudo-incidental stage IA 

squamous cell carcinoma in a 67-year-old man from ITALUNG (B, C) appearing at baseline LDCT (B) as 

an infrathreshold (5.2 mm in mean diameter) solid nodule in the left anterior lobe (white empty 

arrowhead) and showing growth (10 mm in mean diameter) at the first annual repeat (C). 
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Fig. 2 (A-F). Diffuse lung disease at baseline LDCT.  

Advanced destructive pulmonary emphysema (A-C) in a 65-year-old man from NLST who died of 

respiratory disease (ICD code J449) 835 days after randomization. Interstitial lung disease (D-F) in a 73-

year-old man from NLST who died of respiratory disease (ICD code J849 - Interstitial pulmonary disease 

unspecified) 2462 days after randomization. 
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Fig. 3 (A, B). Coronary artery calcifications at baseline LDCT.  

Severe coronary artery calcifications in the anterior interventricular artery (white empty arrowhead A) 

and left circumflex artery (white empty arrowhead B) at baseline LDCT in a 69-year-old man from NLST 

who died of atherosclerotic heart disease (ICD code I251) 226 days after randomization. 
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Fig. 4 (A-E). Assessment of risk of LC in the next 1 -6 years based on the analysis of baseline LDCT 

with the Sybil deep learning algorithm90. 

A) Prediction of a very low probability of LC after 1 year (risk score = 0.0109) and 6 years (risk score = 

0.0831) since baseline LDCT in a 59-year-old man from NLST with a small infrathreshold (1.8 mm in 

mean diameter) solid benign nodule in the right upper lobe (white arrow) at baseline LDCT who was 

alive 11 years after randomization. 

B, C) Prediction of a moderate probability of LC after 1 year (risk score = 0.3057) and 6 years (risk score 

= 0.5998) since baseline LDCT in a 56-year-old woman from NLST with a small infrathreshold (3.8 mm 

in mean diameter) (black arrow) solid nodule in the left upper lobe at baseline LDCT (B) which showed 

growth (9 mm in mean diameter) at the annual LDCT performed two years later (C) consistent with a 

pseudo-incidental LC and who received a diagnosis of stage IA adenocarcinoma and was alive 11 years 

after randomization. 

D, E) Prediction of a very low risk of LC after 1 (risk score = 0.0017) and 6 years (risk score = 0.0329) 

since baseline LDCT in a 57-year-old woman from NLST with a negative baseline LDCT (D) who showed 

a large (18 mm in mean diameter) solid lesion (*) at the next annual LDCT (E) consistent with an 

incident LC who received a diagnosis of small cell carcinoma and died of LC (ICD code C349) 1559 days 

after randomization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 27 of 27

Jo
ur

na
l P

re
-p

ro
of

 27 

 

 

Fig. 5 (A, B). Assessment of risk of CV disease based on the analysis of baseline LDCT with Chao et 

al. deep learning algorithm98. 

The algorithm attributes a moderate (score = 0.351) CV risk in a 55-year-old man from NLST who did 

not show any coronary artery calcification at baseline LDCT (A) and who died of ischemic heart disease 

(ICD code I250) 2004 days after randomization. The algorithm attributes a high (score = 0.700) CV risk 

in a 70-year-old woman from NLST with mild coronary artery calcifications (white arrow) at baseline 

LDCT (C) and who died of acute myocardial infarct (ICD code I219) 511 days after randomization. 

 


