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a b  s t  r a  c t

Airway  remodeling  (AR)  with  chronic  inflammation, are  key features in asthma pathogenesis.  AR char-
acterized  by  structural  changes  in the  bronchial  wall is associated  with  a specific  asthma phenotype
with  poor  clinical  outcomes,  impaired  lung  function  and reduced  treatment  response.  Most  studies  focus
on the  role  of inflammation,  while understanding  the  mechanisms  driving AR is  crucial for  developing
disease-modifying  therapeutic  strategies.

This  review paper summarizes current  knowledge  on the mechanisms  underlying AR, diagnostic
tools,  and  therapeutic  approaches. Mechanisms  explored  include the  role of the  resident  cells  and  the
inflammatory  cascade in AR. Diagnostic  methods such  as  bronchial biopsy,  lung function  testing,  imag-
ing, and  possible  biomarkers are  described.  The effectiveness  on AR of different treatments of asthma
including  corticosteroids, leukotriene modifiers,  bronchodilators, macrolides,  biologics,  and bronchial
thermoplasty is  discussed,  as  well  as  other  possible therapeutic  options.

AR poses  a significant challenge  in asthma management,  contributing  to  disease  severity  and treat-
ment  resistance. Current  therapeutic  approaches target  mostly  airway  inflammation  rather  than  smooth
muscle  cell dysfunction  and showed  limited  benefits on  AR. Future  research  should  focus  more on inves-
tigating  the  mechanisms  involved in  AR to  identify  novel therapeutic  targets and  to  develop  new effective
treatments able to prevent  irreversible  structural  changes and  improve  long-term asthma  outcomes.

©  2024  SEPAR. Published by  Elsevier España,  S.L.U. All  rights  are  reserved,  including those for  text
and  data  mining,  AI training,  and similar  technologies.

Introduction

Asthma is a  chronic airway inflammatory disease characterized
by typical respiratory symptoms (cough, wheeze, chest tightness,
shortness of breath) that vary over time and in  intensity associ-
ated with variable expiratory airflow limitation. In some patients
with long-lasting asthma, airflow obstruction becomes persistent
and incompletely reversible due to  pathological airway remodeling
(AR).1,2

∗ Corresponding author.
E-mail address: angelica.tiotiu@yahoo.com (A.T. Cepuc).

AR is  a complex feature of asthma that  involves long-term
changes of airway architecture such as hyperplasia of  the smooth
muscles, subepithelial collagen deposition with increased thick-
ness of the reticular basement membrane (RBM), disruption of  the
epithelial barrier integrity with metaplasia of goblet cells inducing
mucus hyperproduction, and angiogenesis.3,4 AR pathogenesis is
not fully understood. Until recently, it was  thought that it is caused
by chronic airway inflammation.5 However, AR is  not only a fea-
ture of late-onset asthma, because structural changes were found
in bronchial biopsies from pre-school children with severe wheez-
ing  and a murine model with neonatal inhaled allergen-disease.6–8

These findings suggest that AR may  occur early in the disease, and
could be a triggering process, rather than a  secondary event.9,10 A

https://doi.org/10.1016/j.arbres.2024.09.007
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Fig. 1. Main contributors to airway remodeling in asthma. ASM: airway smooth
muscle.

genetic predisposition is  also suggested.4 AR is associated with poor
clinical outcomes, impaired lung function, lower response to  treat-
ment, and altered quality of life (measured by Asthma Quality of
Life Questionnaire – AQLQ) in  asthma patients.11 Even though the
degree of remodeling correlates with asthma severity, alterations of
the bronchial wall are also present in mild disease.12,13 Like inflam-
mation, AR in asthma is  heterogeneous, varies between individuals,
and may  contribute to asthma phenotypes and endotypes.14

As the presence of AR is associated with more severe asthma
(SA) and poor response to  treatment, targeting this component of
the disease with early diagnosis and prevention could improve clin-
ical outcomes and patients’ AQLQ score.13 This review summarizes
current knowledge on the mechanisms underlying AR in  asthma,
the diagnostic tools, the clinical phenotypes and the possible ther-
apeutic approaches in the aspect of personalized medicine.

Mechanisms

AR is the result of complex interaction between the airway
resident cells (epithelial cells, smooth muscle cells, fibroblasts,
neuronal cells, endothelial cells), the inflammatory cells (den-
dritic cells – DCs, eosinophils, neutrophils, mast cells – MCs,
macrophages, lymphocytes and innate lymphoid cells – ILC),
and many humoral components (cytokines, enzymes, and growth
factors)2,7,10 (Figs. 1 and 2).

AR as Secondary Event of Inflammation

According to the “inflammatory theory”, the airway epithelial
cells (AECs) are the “initiators” of the process.10,15 Following expo-
sure to allergens, microbial proteins, and air pollutants, injured
AECs release alarmins (e.g. IL-33, IL-25, TSLP) that activate DCs,
ILC2, T helper 2  lymphocytes (Th2), MCs, and macrophages, which
contribute to downstream inflammation.5,15 In addition, envi-
ronmental injuries may  induce AECs apoptosis, with paracrine
secretion of transforming growth factor-� (TGF-�) which initiates
tissue regeneration to restore homeostasis. However, persistent,
and prolonged tissue stimulation by  growth factors can lead to
pathological AR seen in asthma.10

The alarmins could directly induce collagen production by
lung fibroblasts. IL-25 promotes lung fibroblasts proliferation
while IL-33 induces the expression of fibronectin. The conse-
quent accumulation of extracellular matrix (ECM) proteins leads to
subepithelial RBM thickening that occurs early in the pathogenesis
of asthma.15

The three alarmins promote eosinophilic inflammation by acti-
vating ILC2 and Th2 via DCs, both sources of IL-4, and IL-13,
that increase mucus production, collagen synthesis and deposition,
airway smooth muscle (ASM) cell contraction and proliferation,
and fibroblast-to-myofibroblast transition (FMT).15,16 Eosinophils
release various mediators including TGF-� that can directly activate

the AECs and mesenchymal cells.15 Alarmins trigger the produc-
tion of TGF-� by macrophages and stimulate ASM proliferation.
Activated macrophages release matrix metalloproteinases (MMPs)
that can alter the ECM structure.10,15 During allergic response,
MCs  secrete mediators (e.g. histamine, prostaglandin D2,  tryptase),
cytokines (e.g. TSLP, IL-33, IL-13), and vascular growth factors that
induce fibroblast, endothelial, and epithelial cell proliferation pro-
moting AR.13 In non-allergic asthma, AECs stimulate the production
of Th17 cytokines inducing neutrophilic inflammation and TGF-�
production with accumulation of fibrotic matrix components. The
immune cells are “amplifiers” of AR.10

The epithelial–mesenchymal transition (EMT), a key feature of
AR, is a biological process allowing AECs to assume a mesenchy-
mal  cell phenotype. That includes increased migratory capacity,
invasiveness, resistance to  apoptosis, and production of ECM com-
ponents, contributing to  airway wall fibrosis.10 This process is
upregulated by growth factors (e.g. TGF-�), cytokines and media-
tors (e.g. IL-4, IL-24, MMPs) secreted by resident and inflammatory
cells.17–21

Subepithelial fibrosis is  mediated by submucosal resident
fibroblasts that proliferate and differentiate into myofibroblasts
through the process of FMT. Myofibroblasts are mesenchymal cells
with contractile and secretory abilities (e.g. collagen, fibronectin,
MMPs, growth factors). TGF-� plays a  central role  in the induc-
tion of FMT  in asthma, but interleukins (e.g. IL-4, IL-5, IL-13,
IL-17, IL-25, IL-33), chemokines (eotaxin, periostin), as well as
mechanical forces and ECM proteins could also influence this
process.22

ASM mass is  increased in both large and small airways in  asthma
due to  cells hyperplasia. The ASM layer thickness correlates pos-
itively with the severity of asthma. Additional immigration of
myofibroblasts contributes to the rise of ASM layer. These pro-
cesses are triggered by growth factors (e.g. TGF-�),  cytokines (e.g.
TSLP), components of the ECM, and chemokines.23 ASM cells from
asthma patients exhibit increased metabolism, and proliferation
which can lead to  changes in  mechanical capabilities, increased
airway stiffness, and the formation of mucosal folds.14 ASM cells
can also contribute to airway inflammation through the release
of cytokines and chemokines (e.g.  IL-5, IL-13, eotaxin), regulate
ECM via the secretion of MMPs, collagen type I, and perlecan,
which in turn, may  promote the ASM proliferation. MCs  infiltra-
tion is increased in  ASM in  asthma patients, and their number
correlates with the degree of airway hyperresponsiveness (AHR).13

In this model, fibroblasts and ASM cells are “effectors” of  AR in
asthma.10

AR  as Primary Event

ASM is  the cell responsible for generation of airway tone
and contraction. Enhanced contractility of ASM was  found in
asthma patients due to abnormalities of calcium homeostasis
and/or sensitization and altered airway innervation. Increased
ASM contractility contributes to AHR.24 AR might be initiated
in the absence of inflammation, following bronchoconstriction
in response to stimuli.2,7 During bronchoconstriction, the airway
epithelium is subjected to  excessive mechanical forces causing
AECs damage that  leads to previous described effects contribut-
ing to  AR (e.g. release of TGF-� promoting subepithelial fibrosis
by fibronectin collagen type III and V deposition, FMT, ASM
cells hyperplasia and mucus hypersecretion due to  goblet cell
metaplasia). Bronchoconstriction stimulates epithelium to  release
IL-6, IL-8, and monocyte chemoattractant protein-1, which act
as mitogens for ASM cells.13 Several data suggests that mito-
chondrial dysfunction could play a role in ASM remodeling in
asthma.8,25
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Fig. 2. Mechanisms involved in asthma airway remodeling. AHR: airway hyperresponsiveness, ASM: airway smooth muscle, BL: B lymphocyte, DC: dendritic cell, Eo:
eosinophil, EMT: epithelial mesenchymal transition, Fbs: fibroblast, FMT: fibroblast–myofibroblast transition, IL: interleukin, ILC2: innate lymphoid cell type 2, M�:
macrophage, MC:  mast cell, MMP: matrix metallo-proteinase, Mfbs: myofibroblast, Ne: neutrophil, Th2: T helper 2 cell, Th17: T helper 17 cell, TGF-�:  transforming growth
factor  beta.

Diagnosis Tools

Bronchial Biopsy

The gold standard of AR diagnosis requires bronchial biopsy
by fiberoptic bronchoscopy allowing to the direct examination of
the tissue (Fig. 4). However, this method is  invasive and reflects
mostly the proximal airways rather than small airways, so it is  not
recommended to  be performed routinely in clinical practice.2,10 A
recent study in asthma adults identified different clusters accord-
ing to the structural changes on bronchial biopsies. The cluster
with high ASM mass (19% of studied patients) was characterized
by sputum eosinophilia, elevated total serum IgE levels, increased
prevalence of positive skin test for Aspergillus sp, low lung function,
important AHR, and moderate therapeutic pressure. The particu-
larities of the cluster with high RBM thickness (31% of patients)
were: increased prevalence of atopy, high total serum IgE levels,
sputum eosinophilia, moderate decrease in lung function, ele-
vated exhaled fraction of nitric oxide (FeNO) despite maximal daily
doses of inhaled corticosteroids (ICS), and great AHR.26 Asthma
patients with ASM area >  26.6% had worse asthma control, high
rate of exacerbations per year and increased weekly use of reliever
medication.25

Biomarkers

Currently there are no specific biomarkers for the assessment of
AR in clinical practice. Blood eosinophilia was identified as a  risk
factor for airflow obstruction in asthma and predictive for enhanced
longitudinal decline in  lung function.27 Clinical studies showed
increased levels of eosinophils in blood, sputum, and bronchoalve-
olar lavage fluid in patients with irreversible airway obstruction
(IRAO) compared to those with reversible airway obstruction.28,29

FeNO, another biomarker of T2-asthma, is  correlated with greater

AHR in asthmatic children and adults.27 Elevated serum levels
of periostin were found in  asthma adults with fixed and more
severe airflow obstruction, while its expression in bronchial biop-
sies is associated with enhanced lung function decline.27–29 Serum
periostin seems to be more useful than blood eosinophils or FeNO
for assessing AR in  asthmatics, even in those well-controlled.30,31

Patients with IRAO have  high serum levels of fibrinogen and
TGF-�, but their potential as biomarkers of AR should be  better
investigated.28,29

Lung Function Tests

Asthma diagnosis is usually confirmed when evidence of vari-
able expiratory airflow limitation assessed by spirometry or
measure of Peak Expiratory Flow (PEF), over time, and in mag-
nitude. Spirometry testing allowed to the measure of the forced
expiratory volume per second (FEV1) and the ratio of FEV1 to forced
vital capacity (FEV1/FVC). Decrease of these parameters indicates
expiratory airflow limitation. Responsiveness (previously called
“reversibility”) should be tested if suspicion of asthma. Improve-
ment from baseline in FEV1 or FVC by ≥12% and 200 mL,  measured
within minutes after inhalation of rapid-acting bronchodilator, or
weeks after the introduction of ICS was considered longtime as
a positive responsiveness test, but recently the cut-off has been
changed by >10% of the patient’s predicted value. Sometimes, a
bronchial provocation test is  needed to assess AHR.1

Some asthma patients develop IRAO (FEV1/FVC < 0.7 and
FEV1 < 80%) due to  the presence of AR.24,25 They have a particular
clinical phenotype of “asthma with persistent airflow limitation”1

(Fig. 3). IRAO is present in 55–60% of patients with SA.10

PEF measurement is not useful for the diagnosis of  AR. Spirom-
etry assesses the severity of airflow obstruction, but it not  directly
detects AR. However, certain spirometry findings like the persistent
airflow limitation despite treatment, the reduced lung function,
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Fig. 3. Main structural airway remodeling features correlated with clinical characteristics of asthma.

Fig. 4. Summary of current diagnostic tools and therapeutic options of airway remodeling in asthma. aOS: airway oscillometry, CT: computed tomography, MRI: magnetic
resonance  imaging, EBUS: endobronchial ultrasound.

and  the decreased responsiveness to bronchodilator medications
may  suggest the presence of AR in  severe or long-standing asthma.
Spirometry is useful for monitoring disease progression in  asthma,
including AR development over time, and helps physicians to
prevent this feature by adjusting the treatment.1 In  addition to
spirometry, the plethysmography assesses the airway resistance
(Raw) directly related to  AR and the presence of indirect signs of
airway obstruction such as pulmonary hyperinflation.29,32,33 The
bronchial lumen area correlates directly with bronchial obstruc-
tion parameters (FEV1,  forced mid-expiratory flow FEF25–75) and
inversely with residual volume and Raw.33 Airway oscillometry
(aOS) is particularly useful in asthma. By measuring Raw, reac-
tance, and impedance across a  range of frequencies, aOS provides
a more comprehensive evaluation of airway function compared to
traditional spirometry. Increased Raw and respiratory impedance
correlate with the degree of AR in asthma and could detect early
changes in airway function even before airflow limitation.34 Oscil-
lometry bronchodilator response also seems more sensitive than

those assessed by spirometry and should be performed before
labeling people with the term IRAO.35 Persistent AHR has been
identified as a  risk factor for longitudinal decline of FEV1 in asth-
matics even in those well-controlled by ICS.35 Early identification
of AHR by bronchial provocation tests allows for timely therapeutic
intervention and prevention of AR.1

Several factors were identified as associated with IRAO such
as male gender, long disease duration, cigarette smoking, uncon-
trolled asthma, sputum eosinophils and neutrophils, and high
therapeutic pressure including oral corticosteroids (OCS). An
Asthma Control Questionnaire score of 2.36 could identify IRAO
with a  high sensitivity (72%) and specificity (77%).28

Imaging

Routinely performed chest X-ray examination is  not helpful to
evaluate AR in asthma patients. Its  clinical value is restricted to
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identify asthma complications or concomitant disorders such as
pneumonia or pneumothorax.

The airways have been reliably examined with computed
tomography (CT) scans from more than 20 years.37,38 Since its
introduction, multidetector computed tomography (MDCT) has
proved to be particularly useful in  the evaluation of AR in  asth-
matic patients.39–41 By applying minimal radiation levels, the
new-generation MDCT provides better resolution than helical
CT with acquisition of multiple cross-sectional slices as thin
as 0.60–0.75 mm  without interslice gaps, in  shorter time, dur-
ing inspiratory and expiratory phases, with the possibility to
extract quantitative data.42–45 Quantitative CT (qCT) can evaluate
bronchial thickness (lumen diameter – LD and area – LA, bronchial
wall thickness – WT  and area – WA), the presence of mucous plugs
in the airways, lung hyperinflation and air trapping (e.g. identifi-
cation of low-attenuation areas, measure of lung density).39,46–49

The features of  AR observed in qCT images show strong cor-
relations with pathological and functional examinations.29,50,51

Analysis of qCT allowed to identify distinct asthma phenotypes with
different clinical outcomes. The more advanced AR on qCT is asso-
ciated with low lung function, high exacerbation rate, and worse
response to standard therapy.29,47,52 Mucus plugging on CT-scan
is linked to T2-inflammation, more severe asthma, frequent exac-
erbations and poor lung function.53,54 Positive correlations were
found between WA%  ≥ 50% on  CT-scan and increased peripheral
resistance and reactance measured by aOS.55 Recent longitudinal
studies demonstrated that qCT can help in selecting asthmatics
prone to irreversible loss of lung function with time and assist in  the
evaluation of response to biologics, becoming a useful diagnostic
tool for personalized medicine in  asthma management.46,56,57

Compared to CT-scan, magnetic resonance imaging (MRI)
provides superior soft-tissue contrast, without patient radia-
tion exposure.58,59 Fast imaging protocols are based on breath
hold acquisitions or triggering/gating to  compensate for motion
artifacts.59 However, MRI  has lower spatial resolution than qCT,
so non-contrast-enhanced MRI  is  not very useful for the evaluation
of subtle changes in airway structure seen in asthma patients.58

The application of hyperpolarized gases with MRI  allows to direct
assessment of ventilation heterogeneity and quantitative measure-
ment of terminal airway, that correlate with AR. Serial imaging
can evaluate disease progression and response to  therapy over
time.58–60

The endobronchial ultrasound technique (EBUS) is also useful
for the assessment of AR in asthma patients.61 EBUS allows the
detailed analysis of the bronchial wall structures distinguishing dif-
ferent layers. The inner layers contain the epithelium, submucosa,
and ASM while the outer layers correspond to cartilage.61,62 In  dis-
tal no cartilaginous airways EBUS can visualize the three layers of
the bronchial wall.62 The EBUS may  be useful for asthma patients
to evaluate wall changes after bronchial thermoplasty (BT).63 How-
ever, EBUS is an invasive method, requires an expert bronchoscopy
skill, and allows for local evaluation of the airways.

The role of other imaging methods such as optical coherence
tomography or positron emission tomography in  the evaluation of
AR should be determined.60,64

Treatment

Corticosteroids

Corticosteroids are the cornerstone of treatment in asthma.1

Several clinical data showed that inhaled corticosteroids (ICS)
decreased RBM thickness and collagen type III deposition in
bronchial biopsies in asthma patients if administered for more
than 6-weeks.65–68 A greater effect was observed after 2-years of

treatment with a  high-dose of budesonide, suggesting a  possible
dose-dependent, long-term effect.68 This benefit was  not  con-
firmed by all studies with ICS, neither after 2-weeks treatment with
OCS.69–72 Q2

The data about the effect of corticosteroids on the airway
epithelial damage are also divergent. Several experimental studies
suggested that corticosteroids may  contribute to AR by inducing
AECs apoptosis, while others demonstrated that this treatment
restored the integrity of epithelial cell monolayers through the
redistribution of tight junction proteins.73–75 Bronchial biopsies
from asthmatics treated 10-years with ICS showed a significant
decrease in the number of inflammatory cells, with small focal areas
with non-ciliated cells and persistence of squamous cell meta-
plasia in  some patients, suggesting partial recovery of epithelial
damage.76

In an animal model, a  single dose administration of beclometha-
sone caused acceleration of the mucus release from goblet cells
probably due to overstimulation.77 Other clinical and experimental
studies from asthma patients treated longer time with ICS demon-
strated an increase in  the number of ciliated cells and a reduction
of goblet cell hyperplasia suggesting a  possible time-dependent
effect.78,79

On asthma patients, a  6-months treatment with inhaled
beclomethasone dipropionate decreased both vessel number and
percent vascularity within the lamina propria, modifications asso-
ciated with changes in collagen III thickness.80 Another study
showed a  significant reduction in  the vascular component of  AR
only in asthma patients receiving high-dose inhaled fluticasone
propionate after 6-weeks of treatment.81

Despite undeniable evidence of ICS effectiveness on reducing
AHR, the therapeutic index is not the same for all products and
some asthma patients under treatment continue to have airflow
obstruction.65,69,82–84 In  addition, the long-term use of high-dose
ICS is associated with potential systemic side effects.85

Beta-agonists

Beta-agonists are vital for alleviating asthma symptoms by
relaxing ASM.1 Experimental data suggests that long acting �2-
agonists (LABA) have no impact on ASM cells hyperplasia in
asthma patients, but the association ICS-LABA decreased goblet cell
metaplasia.86,87 A clinical study showed that salmeterol addition in
asthmatics already receiving ICS, reduced vessels density in  lamina
propria after 3-months of treatment.88

Anticholinergics

Studies on animal models suggested that tiotropium admin-
istration could reduce AHR, mucus production, thickness of
ASM, subepithelial fibrosis, and goblet cell metaplasia.89–91 Sev-
eral clinical data showed that addition of tiotropium in  asthma
patients treated with ICS-LABA significantly decreased airway
WA  and WT  on CT-scan (p <  0.05 for both), and improved air-
flow obstruction, while glycopyrronium offers a  better protection
against methacholine-induced bronchoconstriction than placebo
(p <  0.002).92–94

Leukotriene Modifiers

In animal models, leukotrienes receptor antagonists (LTRA)
showed a positive impact on  AHR, goblet cell hyperplasia,
EMT, subepithelial fibrosis, ASM hyperplasia by inhibiting TGF-�
signaling.95–101 Zileuton, a  leukotriene synthesis inhibitor, reduced
ASM mass and ECM deposition in  an animal model.102 LTRA
improve AHR in asthma patients.103,104 Several clinical data
showed that 8-weeks treatment with montelukast prevents AR by
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decreasing collagen deposition in airways in  asthmatic children,
and myofibroblast count in adults with mild atopic asthma.98,105

Macrolides

Macrolides are antibiotics recognized for their anti-
inflammatory properties, that can reduce exacerbation rate in
SA.106 Experimental data suggested that azithromycin administra-
tion decreases AECs apoptosis, attenuates goblet cell hyperplasia,
suppresses EMT, reduces AHR, proliferation and viability of ASM
cells.107–114 Both roxithromycin and azithromycin inhibit vascu-
lar endothelial growth factor induced ASM cell proliferation in
vitro.115,116 A clinical trial showed that 8-months treatment with
azithromycin (250 mg three days a week) increased LA  in patients
with SA on CT-scan without significant change of the WT  versus
placebo.117

Biologics

Biologics, humanized antibodies used as add-on treatment in
patients with SA, showed also benefits on AR.

In vitro administration of the anti-IgE antibody, omalizumab,
prevented ASM cell proliferation, collagen and fibronectin deposi-
tion in allergic asthma.118,119 Clinical data showed that 16-weeks
treatment with omalizumab decreased airway WT  on CT-scan in
patients with SA.120,121 Effectively, a  significant reduction in RBM
thickness and fibronectin accumulation was found on bronchial
biopsies from patients with severe allergic asthma after 12-months
treatment with omalizumab.122,123 The decrease of fibronectin
deposition in bronchial mucosa was associated with an improve-
ment in asthma control and AQLQ.123 Experimental and clinical
studies demonstrated that omalizumab administration inhibited
AHR in allergic asthma.124–126

Biologics targeting IL-5 (mepolizumab) and its receptor � (ben-
ralizumab) showed positive impact on AR. One-year treatment
with mepolizumab significantly decreased airway WA on CT-scan
in patients with refractory eosinophilic asthma.127 Mepolizumab
reduced expression of ECM proteins (e.g. tenascin, lumican, procol-
lagen III) and of TGF-�1 by eosinophils in bronchial biopsies from
patients with mild atopic asthma, after 3-months of treatment.128

Preliminary results from the MESILICO study showed that one-
year treatment with mepolizumab significantly decreased RBM
thickness, ASM area, and extent of epithelial damage in patients
with late-onset, severe eosinophilic asthma and fixed airflow
obstruction.129 Benralizumab reduced the number of tissue myofi-
broblasts and ASM mass in bronchial biopsies from patients
with severe eosinophilic asthma after 3-months of treatment.130

Decrease in mucus plugs and ventilation defects were observed
on functional imaging already at day 28 after benralizumab injec-
tion in patients with severe eosinophilic asthma, and the early
response persisted 2.5-years later, alongside significantly improved
asthma control.131–133 Both mepolizumab and benralizumab sup-
pressed the AHR induced by histamine in  an experimental study,
but this benefit was confirmed only for benralizumab in clinical
setting.127,134–136

Experimental data showed that  IL-4 receptor � blockade by
dupilumab decreased AHR, mucus production, and vascular per-
meability in the airways.137,138 A prospective clinical study proved
that 48-weeks treatment with dupilumab reduced mucus score and
airway WT on CT-scan in patients with uncontrolled moderate-to-
severe asthma. The decrease in  mucus score was associated with
improvement of asthma control, AQLQ, and airway obstruction.139

Tezepelumab, an anti-TSLP antibody, showed benefits on AR
in a murine model of asthma by reducing collagen deposition,
goblet cell hyperplasia, TGF-� levels in  the airways, and AHR to
methacholine.140 However, a  recent randomized clinical trial failed

to  prove a  significant effect of tezepelumab after 28-weeks of treat-
ment on AR assessed by bronchial biopsies, CT-scan and IOS in
patients with moderate-to-severe asthma compared to placebo.141

Other clinical data demonstrated a  decrease of AHR to manni-
tol after at least 12-weeks of treatment by tezepelumab versus
placebo, and a reduction of occlusive mucus plugs on CT-scan after
28-weeks of treatment.141–143 The last effect was correlated with
the improvement in FEV1.143

Other Medications

Adding six standardized quality house dust mite sublingual
immunotherapy to standard pharmacotherapy in patients with
allergic asthma and rhinitis for 48-weeks significantly decreased
airway WA and WT with increase in  LA on CT-scan.144 Fevipiprant,
a prostaglandin D2 type 2 receptor antagonist, administered 12-
weeks reduced ASM mass on bronchial biopsies in  asthma patients
by decreasing airway eosinophilia with concomitant diminished
recruitment of myofibroblasts and fibrocytes to  the ASM bundle.145

Increasing number of studies are focusing on potential therapies
that could reduce ASM hypercontractility and AHR by improving
abnormalities in calcium homeostasis and in airway innervation.24

A  clinical trial showed that gallopamil, a calcium channel blocker,
administered for one year, reduces ASM area on bronchial biopsies
and normalized ASM thickness on CT-scan.146

Bronchial Thermoplasty

BT, an endoscopic treatment using radiofrequency energy, is
the only therapy that lastingly decreased AR in 60%  of adults
with SA.1,147 Besides the reduction in ASM mass, RBM thicken-
ing, submucosal nerves, and epithelium neuroendocrine cells, BT
induces an ECM rearrangement with increase in tissue area occu-
pied by collagen but a  less dense fiber organization.147–151 BT
decreased AR by modifying the secretion of epithelium-derived
heat shock proteins that improve AECs regeneration with negative
impact on fibroblasts and ASM cells proliferation without affecting
vasculature.147–149,152,153 Histological parameters were associated
with improvement of asthma control, AQLQ, lung function, and
reduction of the exacerbation rate.151,154–156 If the response to BT
seems to  be  independent of the bronchodilator responsiveness, the
patients with FEV1 < 80% have a  greater reduction in ASM mass after
treatment compared to those with higher FEV1.156,157 The reduc-
tion in  ASM mass by BT  becomes visible after 3-months of treatment
and could persist >  10 years after the procedure.5,151,158

AR and chronic inflammation are critical components in asthma
pathogenesis. Recognizing that AR may  occur early in  the disease
and not simply as consequence of the inflammation is crucial to
developing novel therapeutic strategies in asthma. AR is associ-
ated with a  specific clinical phenotype of asthma. Understanding
the complex mechanisms driving AR is mandatory to  identify dif-
ferent pathological endotypes and for developing new therapies in
asthma.

Advances in imaging techniques offer the possibility for an
objective assessment of AR in  the whole respiratory tract in asth-
matics by broadly accessible, noninvasive, and highly reproducible
tools. Imaging and lung function testing help clinicians to early
detect and accurately evaluate the presence of AR in  asthma
patients.

Most of current therapies of asthma showed limited effects on
AR because they are targeting inflammation and not ASM dysfunc-
tion. Even BT  which acts directly on ASM mass showed benefits only
in a selected population. Potential targets causing ASM cell dysfunc-
tion were identified, and medications are under study, but more
efforts should be deployed on this research way to find effective
treatments of AR in  asthma.
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