Journal Information
Vol. 45. Issue S4.
EPOC y comorbilidad: una visión global
Pages 36-41 (March 2009)
Share
Share
Download PDF
More article options
Vol. 45. Issue S4.
EPOC y comorbilidad: una visión global
Pages 36-41 (March 2009)
Full text access
Disfunción muscular esquelética en la EPOC
Skeletal muscle dysfunction in COPD
Visits
12824
Joaquim Gea
Corresponding author
jgea@imim.es

Autor para correspondencia.
, Juana Martínez-Llorens, Pilar Ausín
Servicio de Neumología, Hospital del Mar-IMIM, Departamento de Ciencias Experimentales y de la Salud (CEXS), Universidad Pompeu Fabra, CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Barcelona, España
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Resumen

La función muscular se halla frecuentamente afectada en los pacientes con enfermedad pulmonar obstructiva crónica (EPOC), lo cual condiciona su semiología y pronóstico. La distribución y la gravedad de esta disfunción son heterogéneas, por lo que sus causas predominantes parecen en parte específicas del grupo muscular examinado. Es el caso de la sobreactividad y una geometría desfavorable características de los músculos respiratorios, frente a la relativa inactividad de los músculos de las extremidades. También hay factores que serían comunes a todos los músculos del organismo. Entre ellos destacarían la inflamación sistémica, las alteraciones nutricionales, el uso de determinados fármacos, la hipoxia y la presencia de comorbilidad y/o edad avanzada. Sin embargo, mientras que los músculos respiratorios muestran un fenotipo adaptado a su situación desfavorable, y llegan a compensarla parcialmente, los músculos de las extremidades muestran cambios de tipo involutivo, que contribuirían a la disfunción. Por tanto, aunque la pérdida funcional puede aparecer en diferentes territorios musculares, sus causas, y por tanto sus enfoques terapéuticos, serán diversos, incluidos el soporte nutricional, el entrenamiento y/o el reposo, según los casos.

Palabras clave:
EPOC
Disfunción muscular
Músculos ventilatorios
Músculos de las extremidades
Rehabilitación
Abstract

Muscle function is frequently affected in patients with chronic obstructive pulmonary disease (COPD), influencing the symptoms and prognosis of this disease. The distribution and severity of this dysfunction are heterogeneous and therefore the main causes seem, in part, to be specific to the muscular group examined, which is the case of the overactivity and unfavorable geometry characteristic of respiratory muscles, compared with the relative inactivity of the muscles of the limbs.

There are also factors that are common to all the muscles in the body. Notable among these factors are systemic inflammation, nutritional alterations, the use of certain drugs, hypoxia and the presence of comorbidity and/or advanced age. However, while the respiratory muscles show a phenotype adapted to their unfavorable situation and manage to partially compensate for this situation, the muscles of the limbs show involutive changes, which contribute to dysfunction. Therefore, although functional loss can develop in distinct muscular territories, the causes – and consequently the therapeutic approaches – differ, including nutritional support, muscle training and/or rest, depending on the muscle.

Key words:
COPD
Muscular dysfunction
Ventilatory muscles
Muscles of the extremities
Rehabilitation
Full text is only aviable in PDF
Bibliografía
[1.]
E.B. Swallow, D. Reyes, N.S. Hopkinson, W.D. Man, R. Porcher, E.J. Cetti, et al.
Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease.
Thorax, 62 (2007), pp. 115-120
[2.]
S.K. Epstein.
An Overview on Respiratory Muscle Function.
Clin Chest Med, 15 (1994), pp. 619-639
[3.]
J. Gea, E. Barreiro.
Actualización en los mecanismos de disfunción muscular en la EPOC.
Arch Bronconeumol, 44 (2008), pp. 328-337
[4.]
A.L. Hamilton, K.J. Killian, E. Summers, N.L. Jones.
Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders.
Am J Respir Crit Care Med, 52 (1995), pp. 2021-2031
[5.]
American Thoracic Society.
Skeletal muscle dysfunction in chronic obstructive pulmonary disease: a statement of the American Thoracic Society and European Respiratory Society.
Am J Respir Crit Care Med, 159 (1999), pp. S1-S40
[6.]
Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. National Heart, Lung and Blood Institute. Update of the Management Sections, GOLD website. [Acceso diciembre 2008.] Disponible en: www.goldcopd.com
[7.]
J. Gea, E. Barreiro, M. Orozco-Levi.
Skeletal muscle adaptation to disease states.
Skeletal Muscle Plasticity in Health and Disease: From genes to whole muscle, pp. 315-360
[8.]
M.D. Goldman, A. Grassino, J. Mead, A. Sears.
Mechanics of the human diaphragm during voluntary contraction: Dynamics.
J Appl Physiol, 44 (1978), pp. 840-848
[9.]
Th. Similowsky, S. Yan, A.P. Gaithier, P.T. Macklem.
Contractile properties of the human diaphragm during chronic hyperinflation.
N Eng J Med, 325 (1991), pp. 917-923
[10.]
E. Zhu, B. Petroff, J. Gea, N. Comtois, A. Grassino.
Diaphragm muscle injury after inspiratory resistive breathing.
Am J Respir Crit Care Med, 155 (1997), pp. 1110-1116
[11.]
M. Orozco-Levi, J. Lloreta, J. Minguella, S. Serrano, J. Broquetas, J. Gea.
Injury of the human diaphragm associated with exertion and COPD.
Am J Respir Crit Care Med, 164 (2001), pp. 1734-1739
[12.]
S. Levine, L. Kaiser, J. Leferovich, B. Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1799-1806
[13.]
M. Orozco-Levi, J. Gea, J. Lloreta, M. Felez, J. Minguella, S. Serrano, et al.
Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.
Eur Respir J, 13 (1999), pp. 371-378
[14.]
S. Levine, T. Nguyen, M. Friscia, J. Zhu, W. Szeto, J.C. Kucharczuk, et al.
Parasternal intercostal muscle remodeling in severe chronic obstructive pulmonary disease.
J Appl Physiol, 101 (2006), pp. 1297-1302
[15.]
J.A. Campbell, R.L. Hughes, V. Shagal, J. Frederiksen, T.W. Shields.
Alterations in intercostal muscle morphology and biochemistry in patients with chronic obstructive lung disease.
Am Rev Respir Dis, 122 (1980), pp. 679-686
[16.]
M. Orozco-Levi, J. Gea, J. Sauleda, J.M. Corominas, J. Minguella, X. Arán, et al.
Structure of the latissimus dorsi muscle and respiratory function.
J Apply Physiol, 78 (1995), pp. 1132-1139
[17.]
Y. Sato, T. Asoh, Y. Honda, Y. Fujimatso, I. Higuchi, K. Oizumi.
Morphologic and histochemical evaluation of biceps muscle in patients with chronic pulmonary emphysema manifesting generalized emaciation.
Eur Neurol, 37 (1997), pp. 116-121
[18.]
A. Ramirez-Sarmiento, M. Orozco-Levi, E. Barreiro, R. Mendez, A. Ferrer, J. Broquetas, et al.
Expiratory muscle endurance in chronic obstructive pulmonary disease.
Thorax, 57 (2002), pp. 132-136
[19.]
E. Barreiro, A. Ferrer, N. Hernández-Frutos, J. Palacio, J. Broquetas, J. Gea.
Expiratory function and cellular properties of the external oblique muscle in patients with extremely severe COPD.
Am J Crit Care Med, 159 (1999), pp. A588
[20.]
S. Bernard, P. LeBlanc, F. Whittom, G. Carrier, J. Jobin, R. Belleau, et al.
Peripheral muscle weakness in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 158 (1998), pp. 629-634
[21.]
K.J. Killian, P. Leblanc, D.H. Martin, E. Summers, N.L. Jones, E.JM. Campbell.
Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronic airflow obstruction.
Am Rev Respir Dis, 146 (1992), pp. 935-940
[22.]
C. Coronell, M. Orozco-Levi, R. Mendez, A. Ramirez, J.B. Galdiz, J. Gea.
Relevance of assessing quadriceps endurance in patients with COPD.
Eur Respir J, 24 (2004), pp. 129-136
[23.]
T.P. Ng, M. Niti, C. Fones, K.B. Yap, W.C. Tan.
Co-morbid association of depression and COPD: A population-based study.
Respir Med, 103 (2009), pp. 895-901
[24.]
P. Jakobsson, L. Jorfeldt, A. Brundin.
Skeletal muscle metabolites and fiber types in patients with advanced chronic obstructive pulmonary disease (COPD), with and without chronic respiratory failure.
Eur Respir J, 3 (1990), pp. 192-196
[25.]
P. Jakobsson, L. Jordfelt, Henriksson.
Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 151 (1995), pp. 374-377
[26.]
C. Simard, F. Maltais, P. Leblanc, P.M. Simard, J. Jobin.
Mitochondrial and capillarity changes in vastus lateralis muscle of COPD patients: electron microscopy study.
Med Sci Sports Exerc, 28 (1996), pp. S95
[27.]
A. Satta, G.B. Migliori, A. Spanevello, M. Neri, R. Bottinelli, M. Canepari, et al.
Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance.
Eur Respir J, 10 (1997), pp. 2853-2860
[28.]
F. Whittom, J. Jobin, P.M. Simard, P. LeBlanc, C. Simard, S. Bernard, et al.
Histochemical and morphological characteristics of the vastus lateralis muscle in COPD patients.
Med Sci Sports Exerc, 30 (1998), pp. 1467-1474
[29.]
G.M. Diffee, V.J. Caiozzo, R.E. Herrick, K.M. Baldwin.
Contractile and biochemical properties of rat soleus and plantaris after hindlimb suspension.
Am J Physiol, 260 (1991), pp. C528-C534
[30.]
S.A. Bloomfield.
Changes in musculoskeletal structure and function with prolonged bed rest.
Med Sci Sports Exerc, 29 (1997), pp. 197-206
[31.]
E. Sala, J. Roca, R.M. Marrades, J. Alonso, J.M. Gonzalez de Suso, A. Moreno, et al.
Effect of endurance training on skeletal muscle bioenergetic in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 159 (1999), pp. 1726-1734
[32.]
N. Hernandez, M. Orozco-Levi, V. Belalcazar, M. Pasto, J. Minguella, J.M. Broquetas, et al.
Dual morphometrical changes of the deltoid muscle in patients with COPD.
Respir Physiol Neurobiol, 134 (2003), pp. 219-229
[33.]
J. Gea, M. Pasto, M. Carmona, M. Orozco-Levi, J. Palomeque, J. Broquetas.
Metabolic characteristics of the deltoid muscle in patients with chronic obstructive pulmonary disease.
Eur Respir J, 17 (2001), pp. 939-945
[34.]
J. Gea, M. Orozco-Levi, E. Barreiro, A. Ferrer, J. Broquetas.
Structural and functional changes in the skeletal muscles of COPD patients: The “Compartments” Theory.
Mon Arch Chest Dis, 56 (2001), pp. 214-224
[35.]
W.Q. Gan, W.Q. Man, A. Senthilselvan, D.D. Sin.
Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis.
Thorax, 59 (2004), pp. 574-580
[36.]
M. Di Francia, D. Barbier, J.L. Mege, J. Orehek.
Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 150 (1994), pp. 1453-1455
[37.]
C. Casadevall, C. Coronell, A.L. Ramírez-Sarmiento, J. Martínez-Llorens, E. Barreiro, M. Orozco-Levi, et al.
Upregulation of pro-inflammatory cytokines in the intercostal muscles of COPD patients.
Eur Respir J, 30 (2007), pp. 701-707
[38.]
M. Montes de Oca, S.H. Torres, J. De Sanctis, A. Mata, N. Hernández, C. Tálamo.
Skeletal muscle inflammation and nitric oxide in patients with COPD.
Eur Respir J, 26 (2005), pp. 390-397
[39.]
E.A. Flores, B.R. Bristain, J.J. Pomposelli, C.A. Dinarello, G.L. Blackburn, N.W. Istfan.
Infusion of tumor necrosis factor /cachectin promotes muscle metabolism in the rat.
J Clin Invest, 83 (1989), pp. 1614-1622
[40.]
E. Barreiro, A.M. Schols, M.I. Polkey, J.B. Galdiz, H.R. Gosker, E.B. Swallow, ENIGMA in COPD project, et al.
Cytokine profile in quadriceps muscles of patients with severe COPD.
Thorax, 63 (2008), pp. 100-107
[41.]
M.J. Jackson, S. O’Farrel.
Free radicals and muscle damage.
Br Med Bull, 49 (1993), pp. 630-641
[42.]
E. Barreiro, J. Gea, J.M. Corominas, S.N. Hussain.
Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease.
Am J Respir Cell Mol Biol, 29 (2003), pp. 771-778
[43.]
E. Barreiro, J. Gea, G. Matar, S.N. Hussain.
Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease.
Am J Respir Cell Mol Biol, 33 (2005), pp. 636-642
[44.]
E. Barreiro, B. De la Puente, J. Minguella, J.M. Corominas, S. Serrano, S. Hussain, et al.
Oxidative stress and respiratory muscle dysfunction in severe COPD.
Am J Respir Crit Care Med, 171 (2005), pp. 1116-1124
[45.]
M.A. Vermeeren, E.C. Creutzberg, A.M. Schols, D.S. Postma, W.R. Pieters, A.C. Roldaan, COSMIC Study Group, et al.
Prevalence of nutritional depletion in a large out-patient population of patients with COPD.
Respir Med, 100 (2006), pp. 1349-1355
[46.]
A. Schols, E. Creutzberg, W. Buurman, L. Campfield, W. Saris, E. Wouters.
Plasma leptin is related to proinflammatory status and dietary intake in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 160 (1999), pp. 1220-1226
[47.]
A. Schols, W. Buurman, S. Van den Brekel, M.A. Dentener, E.F. Wouters.
Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease.
Thorax, 51 (1996), pp. 819-824
[48.]
C. Coronell, M. Orozco-Levi, A. Ramírez-Sarmiento, J. Martínez-Llorens, J. Broquetas, J. Gea.
Síndrome de bajo peso asociado a la EPOC en nuestro medio.
Arch Bronconeumol, 38 (2002), pp. 580-584
[49.]
F. Maltais, P. Leblanc, C. Simard, J. Jobin, C. Berubé, J. Bruneau, et al.
Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 154 (1996), pp. 442-447
[50.]
Y. Lacasse, S. Martin, T.J. Lasserson, R.S. Goldstein.
Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. A Cochrane systematic review.
Eura Medicophys, 43 (2007), pp. 475-485
[51.]
Y. Lacasse, R. Goldstein, T.J. Lasserson, S. Martin.
Pulmonary rehabilitation for chronic obstructive pulmonary disease.
Cochrane Database Syst Rev, 18 (2006),
[52.]
A. Ramirez-Sarmiento, M. Orozco-Levi, R. Guell, E. Barreiro, N. Hernandez, S. Mota, et al.
Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.
Am J Respir Crit Care Med, 166 (2002), pp. 1491-1497
[53.]
A. Schols.
Nutritional modulation as part of the integrated management of chronic obstructive pulmonary disease.
Proc Nutr Soc, 62 (2003), pp. 783-791
[54.]
E. Pasini, R. Aquilani, F.S. Dioguardi, G. D’Antona, M. Gheorghiade, H. Taegtmeyer.
Hypercatabolic syndrome: molecular basis and effects of nutritional supplements with amino acids.
Am J Cardiol, 101 (2008), pp. 11E-15E
[55.]
F. Slinde, A.M. Grönberg, C.R. Engström, L. Rossander-Hulthén, S. Larsson.
Individual dietary intervention in patients with COPD during multidisciplinary rehabilitation.
Respir Med, 96 (2002), pp. 330-336
[56.]
R. Casaburi.
Anabolic therapies in chronic obstructive pulmonary disease.
Monaldi Arch Chest Dis, 53 (1998), pp. 454-459
[57.]
L. Burdet, B. De Muralt, Y. Schutz, C. Pichard, J.W. Fitting.
Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study.
Am J Respir Crit Care Med, 156 (1997), pp. 1800-1806
[58.]
W.I. De Boer, H. Yao, I. Rahman.
Future therapeutic treatment of COPD: struggle between oxidants and cytokines.
Int J Chron Obstruct Pulmon Dis, 2 (2007), pp. 205-228
[59.]
C. Koechlin, A. Couillard, D. Simar, J.P. Cristol, H. Bellet, M. Hayot, et al.
Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease?.
Am J Respir Crit Care Med, 169 (2004), pp. 1022-1027
[60.]
E. Barreiro, J.B. Gáldiz, M. Mariñán, F.J. Álvarez, S.N. Hussain, J. Gea.
Respiratory loading intensity and diaphragm oxidative stress: N-acetylcysteine effects.
J Appl Physiol, 100 (2006), pp. 555-563
Copyright © 2009. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?