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Cecilia López-Ramı́rez Fernando Gustavo Gutiérrez Herrero
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Ruth Sáez de la Maleta Úbeda Oscar Bernadich Graciliano Estrada

Trigueros Aurora Orejas J. Carlos Santana Astudillo J. Trapé-Úbeda
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GE, Orejas A, Carlos Santana Astudillo J, Trapé-Úbeda J, Barco-Sánchez A, CLINICAL
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Graphical abstract 

 

 

Highlights 

 Software improves the effectiveness of biomarkers panel in lung cancer diagnosis. 
 CLAUDIA expert software can complement LDCT scans for early detection of Lung Cancer. 
 CLAUDIA Expert Software Rapidly Stratifies lung cancer risk in symptomatic Patients. 

 

 

 

ABSTRACT 

Objectives 

Diagnostic tools that stratify lung cancer (LC) risk can help prioritize care for patients at 

the highest risk and optimize time and procedures to achieve the final diagnosis. We 

have previously demonstrated that six tumour biomarkers (TBs) - CEA, CYFRA 21.1, 

CA 15-3, SCC Ag, ProGRP, and NSE - can help assess LC risk. We developed expert 

software that combines these TBs with clinical and imaging data to estimate LC risk. 

Methods. 

The diagnostic accuracy of this expert software was evaluated in a multicentre study. 

We prospectively recruited 2,005 individuals referred to 12 reference hospitals in Spain 

and Portugal for suspicion of LC. The six TBs were determined and the expert software 
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was applied to all patients and correlated with the final diagnosis. 

Results: 

A final diagnosis of LC was made in 1,392 patients. The expert software yielded 87.7% 

sensitivity, 75.5% specificity, 89.0% positive predictive value and 73.0% negative 

predictive value. Sensitivity increased with tumour size and extension. The software 

also provides histological information, correctly predicting cancer in 98.4% of small-

cell LC and 93.2% of non-small-cell LC, which correlates with the histological 

diagnosis of 90% and 91.2%, respectively. 

Conclusions: 

The expert software developed provides excellent diagnostic accuracy for diagnosing 

LC. Accordingly, this software can help stratify the risk of LC and prioritize the 

evaluation of patients at higher risk, optimizing procedures based on risk and 

knowledge of the most likely histological type, and providing a valuable tool for risk 

stratification and clinical decision support, particularly in Rapid Diagnostic Units. 

Keywords: Lung cancer; Diagnosis; Tumour biomarkers; Expert software; Risk 

stratification. 

 
 

INTRODUCTION 

Lung cancer (LC) is the most prevalent and deadliest form of human cancer worldwide, 

accounting for 1.8 million deaths annually and 17.8% of all cancer-related fatalities [1].  

While in some c a s e s  the diagnosis LC is straightforward,  i t  remains challenging in 

others, particularly when imaging studies reveal indeterminate nodules [2,3]. Several 

studies have suggested that low-dose computed tomography (LDCT) screening can 

reduce mortality by LC; however, the results remain controversial [3–8]. Additionally, 

LDCT is a high-demand resource, leading to delays in early access, and the associated 

costs, along with the high incidence of indeterminate nodules, make it crucial to prioritize 
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the use of this study in high-risk patients [4,5,9].  Furthermore, while advanced imaging 

such as PET-CT offers high diagnostic value, it is an expensive and often less accessible 

technique in many hospitals, limiting its use as a first-line triage tool. 

Circulating tumour biomarkers (TB) are valuable diagnostic tools, particularly when used 

in combination to enhance sensitivity and specificity [10-13]. However, the optimal TB 

combination for maximizing accurate diagnosis of LC remains uncertain [10,12-19].  

Previous studies by our group have demonstrated that a combination of six TB 

[carcinoembryonic antigen (CEA), cytokeratin fragment 21-1 (CYFRA 21-1), cancer 

antigen 15-3 (CA15- 3), squamous cell carcinoma antigen (SCC-Ag), progastrin- 

releasing peptide (ProGRP), and neuron-specific enolase (NSE)]  correlates with the 

presence of LC  and its major histological subtypes, i.e., non–small-cell LC (NSCLC) - 

adenocarcinoma (ADC) and squamous cell carcinoma (SCC) - and small-cell LC 

(SCLC)[11,20]. This combined TB model showed significantly greater diagnostic 

accuracy than a clinical model based solely on tumour size, age, and smoking status [20].  

Although some studies indicate the potential benefit of integrating TB serum 

concentrations with LDCT for optimizing the diagnosis of LC [21], this approach has yet 

to be fully established. LDCT is a high-demand resource, leading to delays in early access, 

and the associated costs, along with the high incidence of indeterminate nodules, make it 

crucial to prioritize the use of this study in high-risk patients [4,5,9].  

It is important to acknowledge that TB markers can yield false positives in certain 

pathophysiological conditions that require differentiation from LC.  Incorporating clinical 

and laboratory variables that identify these conditions can enhance diagnostic accuracy.   

To address this challenge, we developed expert software named CLAUDIA (Cancerous 

Lung Algorithm Useful for DIAgnosis). Using clinical variables, computed tomography 

(CT) data, and TB concentrations from 5,000 patients, CLAUDIA calculates the risk of 

lung cancer (LC) and suggests a histological classification.   
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The study aimed to assess and validate the clinical utility of a TB-based software tool for 

decision-making in rapid-diagnosis pulmonary units in 12 hospitals in Spain and Portugal. 

 

MATERIAL AND METHODS 

 

Study Design and Participants 

This prospective, consecutive study included 2,101 adults presenting signs of LC across 

12 hospitals in Spain and Portugal. Patients with prior LC treatment, active malignancies, 

or renal failure were excluded, while those with non-cancerous conditions were included. 

The final study population comprised 2,005 individuals. All participants provided 

informed consent, and data were anonymized (Figure 1). 

This study represents the first large-scale, prospective, multicenter external validation of 

the CLAUDIA algorithm, developed by our group.  

 
The study was approved by the corresponding Ethics Committees (HCB/2017/1060). The 

study was not registered, so when it was designed, it was not required to be carried out. 

LC diagnosis followed international guidelines [2] and was confirmed using CT or 

positron emission tomography scans, and tissue analysis obtained via bronchoscopy, fine-

needle aspiration, endobronchial ultrasound, oesophageal ultrasound, or surgical 

resection. Histology typing was conducted in all patients. 

 

Histological typing and staging of LC 

LC subtypes were classified according to the 2015 World Health Organization 

recommendations [22,23]. Differentiation between SCLC and NSCLC was based on 

morphological criteria and immunohistochemical markers such as CD56 and 

synaptophysin [24]. Staging followed international Tumour-Node-Metastasis (TNM) 
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guidelines [25]. 

TB measurements 

Peripheral blood samples were collected without anticoagulants, centrifuged, and stored 

at 3–5 °C until analysis. Serum TB concentrations were measured in each laboratory using 

electrochemiluminescent assays (Elecsys, ROCHE Diagnostics Switzerland). The 

previously validated upper reference limits (URLs) were:  CEA, 5 ng/ml; CYFRA 21-1, 

3.3 ng/ml; SCC-Ag, 2 ng/ml; CA 15-3, 35 U/ml; NSE, 25 ng/ml; ProGRP, 65 pg/ml.  TB 

values exceeding these thresholds were classified as “abnormal." 

Expert software 

The software is built on algorithms that analyse a comprehensive database of over 5,000 

patients from previous studies [11,13,15,20]. It evaluates serum TB concentrations while 

accounting for biological variability and clinical factors such as pleural effusion, renal 

insufficiency, smoking, cholestasis, and dermatologic conditions.   Different TB cut-off values 

are applied based on clinical conditions; for instance, in smokers, the CEA threshold is adjusted 

to 10 ng/mL instead of 5 ng/mL In patients with renal failure, SCC-Ag is excluded, while in 

those with hepatopathy, certain TB cut-offs increase by up to 50%. 

The software also integrates imaging data, such as nodule size and other characteristics, to 

enhance diagnostic accuracy. This multi-variable approach improves sensitivity and specificity, 

significantly reducing false-positive rates. 

Based on the input data, the software stratifies patients into risk groups of presenting LC. The 

categories are as follows: Very high risk (with a probability of more than 95%), high risk (with 

a probability of LC between 75% and 95%), moderate risk (between 65% and 75%) and low 

risk (less than 65% probability).  For patients classified as moderate risk, the software 

recommends repeating the TB tests after a period of three to four weeks to refine diagnostic 

accuracy. This dynamic reassessment method has been shown to improve diagnostic specificity 
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[10,20,26].  

The current study was conducted as a prospective, multicentre external validation of the 

CLAUDIA software based on the analysis of data from patients who underwent a tumour 

marker profile for suspected lung cancer. The cohort included a total of 2,005 patients 

from 12 participating centres (tertiary and regional hospitals) in Spain and Portugal 

(Supplementary Table S1). 

The algorithm is predicated on a rule-based decision model that integrates molecular 

(biomarker), clinical, and radiological data in order to estimate risk. The methodology 

described herein facilitates the implementation of the dynamic cut-off thresholds 

previously delineated for the purpose of personalised risk stratification. 

Statistical analysis 

Results were expressed as case counts, proportions, medians, and interquartile ranges. 

Sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) were calculated. TB concentrations were compared using parametric (Student’s t-

test) or non-parametric tests (Wilcoxon, Mann-Whitney, Kruskal-Wallis). 

 The Net Reclassification Improvement Index (NRI) was used to assess the ability of the 

software to reclassify LC diagnoses compared to TB analysis alone [27].  NRI quantifies 

improvements in classification by accounting for true and false positives and negatives. 

Net Benefit (NB) analysis [28] was used to compare the diagnostic performance of the 

combined TB panel against the software. A p-value <0.05 was considered statistically 

significant. All analyses were performed using SPSS v.25 (IBM Corp.). 

To assess robustness and generalizability across the centres (as detailed in Supplementary 

Table S2), a formal statistical test for heterogeneity in the Sensitivity and Specificity 

estimates was performed using the Cochran's Q test and the I2 statistic.  

 

RESULTS 
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The diagnosis of LC was confirmed in 1,392 (69.4%) patients, while 613 (30.6%) were 

found to have benign disease. Among the LC cases, 266 were SCLC (19.1%) and 1,126 

NSCLC (80.9%); adenocarcinomas were the most frequent subtype (n=635; 56.4%), 

followed by SCC (n=319; 28.3%) and cancers of indeterminate lineage (n=172; 15.3%) 

(Figure 1). 

In the suspected LC cases, the main finding leading to the diagnostic workup was the 

presence of radiographic nodules in 49.8% of cases, which were slightly more frequent 

in non-cancer than in LC patients (56.9% vs. 46.7%). Dyspnoea, haemoptysis, thoracic 

pain, and persistent cough were present in around 10%; thoracic pain and persistent cough 

were more frequent in LC, while haemoptysis was more common in non-cancer cases. 

Constitutional syndrome components occurred in 5% of LC cases versus 1.5% in non-

cancer patients (Table 1). 

Table 2 compares the clinical and imaging findings and TB concentrations between LC 

and non-LC patients. Significant differences were observed in gender, smoking habits, 

cigarette consumption per year, lung nodules (especially those >3 cm), and TB 

concentrations, all of which were more prevalent in LC patients (p<0.01 to 0.001). 

Smaller nodules were more commonly found in non-LC patients. Within the LC subgroup 

analysis, NSCLC patients were generally older and had different TB profiles:  CEA, 

CYFRA 21-1, SCC-Ag, and CA 15-3 levels were higher in NSCLC, whereas NSE and 

ProGRP were elevated in SCLC patients (p=0.001). All TB values were higher in NSCLC 

than in non-LC patients, except for SCC-Ag, which had similar values in SCLC and non-

LC patients. 

 Table 3 summarizes the diagnostic sensitivity, specificity, NPV, and PPV of TB for 

predicting the risk of LC, both individually and in combination.  The individual diagnostic 

sensitivity ranged from 19.4% (NSE) to 59.8% (CYFRA 21-1), while specificity was 

notably higher, varying from 89.6% (CYFRA 21-1) to 99.3% (NSE). This variation is 
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observed because LC is not a single disease but consists of multiple histological subtypes 

with distinct behaviours, expression patterns and treatment responses. For example, NSE 

is predominantly elevated in SCLC, which accounts for approximately 20% of LC cases. 

Consequently, the sensitivity of NSE is low across all LC subtypes but remains highly 

specific for SCLC when elevated. By incorporating a comprehensive tumour marker 

panel, the software accounts for these variations, enabling accurate classification of LC 

subtypes based on expression patterns. Combined TB assessments, whether defined as a 

≥1 abnormal TB marker or through software-based analysis, substantially improved 

diagnostic sensitivity (89.4% and 87.7%, respectively). The software demonstrated a 

higher specificity (75.5%) compared to ≥1 abnormal TB (63.9%) and exhibited the best 

NPV (73.03%) and PPV (89.06%). 

The NRI analysis of the software led to an overall reclassification rate of 9.8% compared 

to the elevated ≥1 TB rule. Among 113 reclassified cases, 104 were changed from positive 

to negative (7.09%), while 9 shifted from negative to positive. Consequently, the software 

improved NRI by approximately 10% in distinguishing LC from non-LC cases. 

The NB difference between the elevated ≥1 TB approach and the software was 0.07%, 

meaning that for every 14 cases analysed, one additional true cancer case was identified 

without increasing the false positives. 

The prevalence and size of lung nodules were significantly greater in LC patients (Table 

4). Across all nodule size categories (<1 cm, 1–3 cm, and >3 cm), TB levels were 

significantly higher in LC patients (Figure 3B). Figure 2A illustrates the relationship 

between TB levels and the histological subtypes of LC. NSE and ProGRP showed greater 

sensitivity in detecting SCLC, whereas CYFRA 21-1 and CEA demonstrated higher 

diagnostic utility in NSCLC. Of note, NSE and ProGRP concentrations were 

comparatively lower in NSCLC. Furthermore, CYFRA 21-1 concentrations were 

markedly elevated in SCC, while CEA levels were significantly increased in ADC. 
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Figure 2B reveals that, within NSCLC, the sensitivity of TB tends to rise proportionally 

with increasing tumour burden or more extensive dissemination. 

Figure 3A presents concordant findings for SCLC, further supporting the diagnostic 

relevance of NSE and ProGRP in this histological subtype. 

Figure 3B depicts the estimated probability of malignancy stratified according to nodule 

size and TB positivity, demonstrating that both increased nodule dimensions and TB 

positivity are associated with a significantly higher likelihood of cancer. 

Table 5 summarizes the concordance between algorithm-predicted classifications and the 

definitive histological diagnoses. The algorithm achieved high concordance for SCLC 

(90.0%), NSCLC (91.2%), and its major subtypes, including ADC (79.4%) and SCC 

(63.4%). However, the performance was less robust in cases categorized as unspecified 

NSCLC (uNSCLC), as well as in the moderate-risk groups, which yielded concordance 

rates ranging from 8.7% to 38.0%. These findings demonstrate that the algorithm 

accurately distinguishes among the most common tumour types, while less well-defined 

or indeterminate categories remain a challenge. The heterogeneity analysis of the 

diagnostic accuracy across the 12 participating centres revealed mixed results. We found 

homogeneity in Specificity between centers (p=0.081; I2=39.0%), indicating the 

algorithm's stable capacity to correctly identify non-malignancy. Conversely, significant 

statistical heterogeneity was detected for Sensitivity (p=0.005; I2=59.6%). We tested the 

hypothesis that this variability was driven by differences in case-mix. When centers were 

classified into two clinical subgroups based on the percentage of early-stage patients 

(those with >25% and those with <20%) see table S3, homogeneity was successfully 

demonstrated in both Sensitivity and Specificity within each subgroup, confirming that 

the observed heterogeneity was explained by differences in patient populations (table S2).  

 

DISCUSSION 
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Recent bibliometric analyses provide insights into the growing interest in TBs for the 

diagnosis of LC. A review of 990 publications from 2000 to 2022 highlights the sustained 

research focus on TBs and underscores the unmet need for expert software to analyse 

these biomarkers [29]. Our study addresses this gap by validating a six-TB panel (CEA, 

CA15-3, SCC, CYFRA 21-1, NSE, and ProGRP) in conjunction with expert software.  

Previous research has demonstrated that this panel delivers high sensitivity (88.5%) and 

specificity (82%) in single determinations, with further improvements through serial 

testing [20]. In our multicentre study, the panel exhibited a similar sensitivity (87.7%), 

confirming its robustness and applicability in larger, diverse patient populations. Notably, 

thie present study represents the first large-scale multicentre evaluation of these TBs with 

the software, as most previous investigations have been limited to smaller, single centre 

cohorts. 

Our findings demonstrate that the CLAUDIA software achieves strong diagnostic 

performance (Sensitivity 89%, Specificity 73%), which is highly competitive with 

established methods described in the diagnostic literature, such as LDCT [4,5,7,30,31] 

and nucleic acid-based liquid biopsies [9,32]. Since our cohort has a high disease 

prevalence due to its focus on patients already undergoing diagnostic workup for highly 

suspicious clinical and radiological findings, the algorithm's performance requires further 

validation in the context of a low-prevalence screening setting before its utility can be 

fully established as a supplement to current screening procedures. 

LC comprises various histological subtypes associated with distinct TB expression 

patterns. For instance, SCLC predominantly expresses NSE and ProGRP, while NSCLC 

subtypes exhibit higher levels of other TBs (Figures 2A, 2B, 3A). This diversity 

underscores the need for a comprehensive TB panel capable of detecting all LC subtypes. 

As shown in figures 2B, 3A and table 3, there is an association between the TB expression 
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pattern and the histological subtype, which enables the software to suggest a particular 

histology based on the TB concentrations measured.  Furthermore, tumour stage plays a 

crucial role in diagnosis as early-stage LC- characterized by smaller nodules- poses a 

greater diagnostic challenge than advanced disease. Previous studies, including our own, 

have demonstrated that abnormal TB levels significantly increase cancer risk across all 

nodule sizes. Specifically, patients with nodules smaller than one centimetre exhibit a 

fivefold increased risk if TB levels are abnormal, while those with nodules larger than 

three centimetres and abnormal TB levels have a >95% risk of LC [11,13,15,20,33]. 

Figure 3B illustrates the strong association between nodule size and TB positivity in the 

probability of presenting cancer.  

 While essential, static imaging techniques such as CT scans have limitations in assessing 

the dynamic nature of tumour growth and behaviour. This challenge is particularly 

evident in aggressive tumours, which can progress rapidly over short timeframes. The 

software addresses this issue by integrating static imaging data (e.g., nodule size, shape, 

and presence) with dynamic biomarker data from TB concentrations. This combination 

of the two types of data significantly enhances diagnostic accuracy and facilitates earlier 

detection of LC. 

Unlike artificial intelligence models [34], our approach utilises predefined cut-off values 

for different pathologies based on empirical data. It applies expert-driven rules to 

personalize these cut-offs, leveraging a robust, validated database of over 5,000 patients, 

including healthy individuals, those with benign pathologies, and LC patients [11,13,20]. 

By proactively addressing potential sources of error, the software ensures a high level of 

reliability. It minimizes false positives, even in complex cases involving confounding 

factors such as pleural effusion or other non-cancerous conditions.  In cases of diagnostic 

uncertainty, repeating measurements after 3-4 weeks significantly improves diagnostic 
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accuracy, reaching a high specificity as already shown in previous studies by our group 

[20]. 

In our study, the software demonstrated notable improvements in diagnostic performance 

compared to TBs only. Specificity increased from 63.9% to 75.5%, PPV from 84.9% to 

89.1%, and sensitivity was maintained at 87.7%. The NRI analysis revealed a 10% 

improvement in the accuracy of classification compared to using TB alone, which, 

according to some authors, could have a greater clinical impact than a 10% increase in 

the area under the curve in some analyses such as the risk-prediction [35], highlighting 

the clinical relevance of incorporating the expert software into diagnostic workflows. Our 

results demonstrate that the algorithm performs reliably for the primary histologic 

subtypes of LC, particularly SCLC and NSCLC, reaching concordance rates of 90.0% 

and 91.2%, respectively. Subtype-level discrimination was also strong for ADC and SCC, 

supporting the potential utility of the algorithm in routine diagnostic workflows. 

Nevertheless, accuracy substantially decreased in uNSCLC and in specimens classified 

as moderate risk, indicating that indeterminate or overlapping features may reduce 

algorithm precision in these categories. This limitation underscores the need for further 

refinement of the algorithm, potentially through training with a larger and more diverse 

dataset or by integrating additional diagnostic modalities. Ultimately, improving 

algorithmic performance in these challenging cases is critical for its broader 

implementation in clinical practice. These analytical features render this working model 

a valuable asset for Rapid Diagnosis Units. It facilitates swift stratification of patients 

based on their risk of developing LC, enabling the expeditious identification of patients 

who should be given high priority for treatment. Moreover, the ability to suggest the 

histological subtype of a tumour may provide critical guidance in determining the 

suitability of a patient for surgical intervention. In cases in which SCLC is indicated, 
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concordance with the definitive histopathological diagnosis exceeds 90%. Early 

identification of the potential histological subtype also facilitates more targeted diagnostic 

strategies, such as obtaining sufficient tissue for next-generation sequencing, particularly 

in patients with tumours located in anatomically challenging regions. 

The specificity achieved by the expert software in this study (75.5%) was slightly lower 

than the 82% reported in previous studies [20]. This discrepancy may be attributed to the 

multicentre nature of the trial, which involved routine clinical conditions across 12 

hospitals and laboratories. Nevertheless, our findings in previous studies reinforce the 

potential of serial TB determinations in reducing false positives, emphasizing the 

importance of dynamic TB assessments in real-world clinical settings [20,36,37]. 

Overall, our findings highlight the potential of the six-TB panel and expert software as 

valuable complements to LDCT in early LC detection. The strong correlation between 

TB results and nodule size suggests that patients with small nodules and abnormal TB 

levels should be prioritized as high-risk groups. Compared to established screening 

methods for other cancers, such as faecal occult blood testing for colorectal cancer or 

prostate-specific antigen testing for prostate cancer, our TB panel and software 

demonstrate superior diagnostic performance, with advantages that include being non-

invasive, cost-effective, widely available, easy to repeat in a short time and capable of 

achieving high specificity when combined with serial testing.  

We conclude that this study confirms the effectiveness of a six-serum TB panel (CEA, 

CA 15-3, SCC- Ag, CYFRA 21-1, NSE, and ProGRP) combined with the CLAUDIA 

expert software for diagnosing LC. The CLAUDIA expert software further enhances 

diagnostic accuracy, achieving the highest sensitivity-to-specificity ratio (87.7% and 

75.5%), as well as the best PPV (89%), and NPV (73.03%) among currently available 
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diagnostic tests for LC. Moreover, the correlation between TB results and nodule size, 

along with a sensitivity of 70% in early stages, suggests that the TB lung panel and 

CLAUDIA expert software could serve as valuable complementary tools to LDCT scans 

for early detection of LC. The aim of the CLAUDIA algorithm was not to replace 

established imaging modalities but to serve as a simple, fast, (providing results in four 

hours) standardized, and affordable tool that supports rapid clinical decision-making. The 

algorithm provides results within four hours and is designed to be applicable in any 

healthcare setting, regardless of local imaging resources.  

We acknowledge that the observed prevalence of lung cancer in our study cohort (69.4%) 

is high. This was expected, as the population comprised patients referred to Rapid 

Diagnostic Units due to an existing clinical or radiological suspicion of malignancy, 

resulting in a naturally high pre-test probability. This high-risk context is precisely where 

clinicians need the most support in stratifying indeterminate cases and act promptly. 

Importantly, CLAUDIA goes beyond simple binary risk stratification by predicting the 

most probable histological subtype in high-risk cases (Table 5). This crucial additional 

information allows clinicians to anticipate subsequent diagnostic steps or complementary 

molecular testing, significantly improving patient management. 

The most relevant finding in our meta-analysis is the significant heterogeneity observed 

in Sensitivity, which contrasts with the stable performance observed in Specificity. Our 

subsequent subgroup analysis, classifying centres by the proportion of early-stage 

patients, effectively resolved this heterogeneity. This confirms that the variation in 

Sensitivity is predominantly a function of the pre-test probability (i.e., the disease stage 

distribution) rather than fundamental differences in the core performance of the 

CLAUDIA algorithm or variations in laboratory methodology. This dependency on case-
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mix is a known phenomenon in diagnostic tests, and the restoration of homogeneity 

within defined subgroups strengthens the argument for the test's consistency when applied 

to similar patient populations. 

Further research is needed to validate these findings and assess their clinical significance. 

Strengths and limitations 

We carried out the validation study in 12 different centres with minimal prior training 

with the software. Despite the differences among the centres, the results have been very 

satisfactory. We believe that with more extensive prior training, the results could have 

significantly improved. However, this also highlights the intuitive and user-friendly 

strengths of this software.  

The primary strength of this work is its prospective, multicentre external validation 

design. The evaluation across 12 hospitals with varying complexity and protocols assures 

the reproducibility and robustness of the CLAUDIA algorithm, a fact formally confirmed 

by the statistical homogeneity of Specificity across all centres. This provides strong 

evidence that the tool is reliable regardless of the specific healthcare setting. The study 

will allow us to evaluate the capacity of tumour markers in combination with imaging 

methods for the diagnosis of patients arriving at the rapid diagnosis unit under unified 

criteria. A key strength of this study is the successful explanation of initial statistical 

heterogeneity through a robust subgroup analysis based on clinical criteria (proportion of 

early-stage patients). The demonstrated homogeneity of both Sensitivity and Specificity 

within the defined clinical subgroups confirms the algorithm's reliable and generalizable 

performance when applied to patient cohorts with similar disease stage distributions. 

Furthermore, the overall homogeneity of Specificity across all 12 centers strengthens 

confidence in the test's ability to minimize false positives, a critical factor for screening 
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applications.  

The study's limitations include the lack of registration in a public database like 

ClinicalTrials.gov, a practice we acknowledge as advisable for the prospective 

component of the study. The primary weakness lies in the initial finding of significant 

heterogeneity in the overall Sensitivity when all 12 centers are analyzed together. 

Although this heterogeneity was statistically explained by the case-mix differences, it 

underscores the need for standardized patient selection criteria in future studies to 

minimize variability. Another limitation is the dependence on aggregated data 

(TP/FP/TN/FN), which prevents us from performing more detailed individual patient data 

(IPD) meta-regression to identify other potential predictors of performance variation 

beyond the disease stage.We also acknowledge that our study did not include a direct 

comparison against other established risk prediction models, such as the Mayo Clinic 

model. Future validation studies should aim to benchmark our model directly against 

these tools to better ascertain its comparative effectiveness. 
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FIGURE LEGENDS 

Figure 1. Composition of the whole study population and diagnostic subgroups. 
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Figure 2.  

2A. The sensitivity of the tumour biomarkers in relation to histology. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 29 of 37

Jo
ur

na
l P

re
-p

ro
of

29  

2B. Serum tumour biomarker sensitivity is subdivided according to tumour stage in 

NSCLC. 

 

 

 

 

Figure 3. 

3A. Serum tumour biomarker sensitivity is subdivided according to tumour stage in 

SCLC. 

 



Page 30 of 37

Jo
ur

na
l P

re
-p

ro
of

30  

 

 

3B. Probability of lung cancer according to serum tumour biomarker levels and nodule 

size (CT scan). 

Adenocarcinoma ADC, Squamous cell carcinoma SCC, Unspecific non-small-cell lung 

cancer uNSCLC, and SCLC= Small-cell lung cancer 

CA15.3 = carbohydrate antigen 15.3; CEA = carcinoembryonic antigen; CYFRA 21-1 = 

cytokeratin-19 fragment, NSE = neuron-specific enolase; ProGRP = pro–gastrin- 

releasing peptide; SCC-Ag = squamous cell carcinoma–associated antigen. For further 

explanations, see the text. 

OR: Odd ratio; cm: centimetre 
 

TB: tumour biomarker; T1: Initial analysis; T2: Second analysis 3-4 weeks later; LC: 

Patients with final diagnosis of lung cancer; No LC: Patients with final diagnosis of no 

lung cancer. 
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Table 1. The main symptoms of patients referred for suspicious signs of LC and the 

proportion of LC diagnosed according to the symptoms. 

Table 2. Clinical characteristics and tumour biomarker values in all participants (n, 

percentage, or median [interquartile range]). 

SCLC: small-cell lung cancer; NSCLC: non-small-cell lung cancer; cm: centimetre 

NS: non-significant. * p=0.01and **p<0.0001 vs. no cancer; * patients without 

metastases.  

Table 3. Sensitivity, specificity, negative predictive values (NPV), and positive 

predictive values (PPV) of each TB tumour biomarker investigated (upper panel), as 

well as their evaluation combined with the use of the CLAUDIA algorithm. 

 
Table 4. Tumour biomarker values (median [interquartile range]) stratified by nodule 

size and type (benign vs. cancer). To avoid potential bias due to the presence of 

metastasis, patients with stage IV lung cancer were excluded from this analysis. For 

further explanations, see the text. (2005 patients). 

 
 

Table 5. Confusion matrix comparing algorithm-suggested histological 

classifications with definitive diagnoses in lung cancer specimens. Absolute 

frequencies are shown for each diagnostic category (no cancer, SCLC, uNSCLC, 

ADC, SCC), along with the percentage of patients with cancer (% patients with 

cancer) and concordance rates for each group. 

 

.
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Table 1. Main symptoms of patients referred for suspicious signs of lung cancer (LC) and proportion (%) 
of LC diagnosed according to the symptom. 
 

Main Symptom Total patients LC confirmed 
Radiographic nodules 1000 49.8% 651 46.7% 
Dyspnoea 219 10.9% 156 11.2% 
Haemoptysis 205 10·2% 131 9.4% 
Thoracic pain 200 9.9% 154 11% 
Persistent cough 197 9.8% 146 10.4% 
Constitutional symptoms 79 3.9% 70 5.0% 
Persistent Fever 21 1.0% 14 1.0% 
Dysphonia 17 0.8% 16 1.1% 
Other symptoms 67 3.3% 54 3.8% 

 
Table 2. Clinical characteristics and tumour biomarker values in all participants (n, percentage or median 
[interquartile range]). 
 
 
 

No cancer 

(n=613) 

p 

valu

es 

Lun

g 

ca

nc

er 

(n

=1,

39

2) 

 NSCLC 

(n=1,126) 

p values S

CL

C 

(n=

266

) 

Females, % 37.8% <0.01 29.7%  29.5% NS 30.6% 

Age, yrs. 64 [56-74] NS 66 [60-73]  67 [60-74] 0.01 65 [59-71] 

Current smokers, 
% 

37.7% <0.00
1 

48.9%  46% <0.001 61.3% 

Former smokers, 
% 

29.4% 34.2%  35.4% 28.9% 

Never smoked, % 33% 16.9%  18.6% 9.8% 

Pack-yrs. 39 [23-50] <0.001 45 [30-60]  45 [30-60] <0.001 49 [30-62] 

Presence of 
nodule 

349 (56.9%) <0.001 651(46.8%)  556 (49.4%) NS 95 (35.7%) 

<1 cm 88(25.2%) <0.00
1 

26(4.1%)  24 4.4% NS 2 (2.1%) 

1-3 cm 194(54.6%) 235(36.2%)  203 (56.5%)  32 (33.6%) 

>3 cm 67(19.1%) 390(59.9%)  329 (59.1%)  61 (64.2%) 

CEA (ng/ml) 2.2 [1.4-
3.4] 

<0.001 5.5 [2.6-22.6]**  6.1 [2.6-24.5] ** 0.001 4.8[2.2-12.8]* 

CYFRA 21-1 
(ng/ml) 

1.8 [1.3-2.6] <0.001 4[2.4-8]**  4.4 [2.5-8.7]** 0.001 3.4[2.3-5.3]** 

SCC-Ag (ng/ml) 1.1 [0.8-1.5] <0.001 1.2 [0.8-2.2]**  1.3 [0.9-2.4]** 0.001 1[0.7 -1.5] 

CA 15.3 (U/ml) 15 [10-22] <0.001 21 [13.8-34]**  22 [14-36]** 0.001 19 [12-26.5] 

NSE (ng/ml) 12 [10-14.3] <0.001 14.4 [11.7-  13.5 [11-18.7]** 0.001 39 [20-86]** 
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22]** 

ProGRP (pg./ml) 38 [27-49] <0.001 43.2 [30.6-
67]** 

 39.9 [28.7-54]** 0.001 453 [69.5-
1,727]** 

SCLC: small-cell lung cancer; NSCLC: non-small-cell lung cancer; cm: centimetre 
NS: non-significant. * p=0·01 and **p<0·0001 vs. no cancer; * patients without metastases 
 
 
Table 3. Sensitivity, specificity, negative predictive values (NPV) and positive predictive 

values (PPV) of each tumour biomarker investigated (upper panel), as well as their 

combined evaluation and r with the use of the CLAUDIA algorithm. 

 

 
 
Table 4. Tumour biomarker values (median [interquartile range]) stratified by nodule size and 

type (benign vs. cancer). To avoid the potential bias due to the presence of metastasis, patients 

with stage IV lung cancer were excluded from this analysis. For further explanations, see text 

(2005 patients). 

 Nodule size < 1 cm Nodule size 1-3 cm Nodule size >3 cm 

 Be

ni

g

n 

n

p value Ca

n

ce

r 

n

Be

nig

n 

n=

19

p value Ca

nce

r 

n= 

235 

Be

ni

g

n 

n

p 

val

ue 

Ca

nc

er 

n=

39

 Sensitivity 

1,223/1,392 

Specificity 

463/613 

NPV PPV 

INDIVIDUAL ASSESSMENT     

CEA, ng/ml 52.5% 731 91.7 %562 46% 93.5% 

CYFRA 21-1, ng/ml 59.8% 832 89.6%549 49.5% 92.8% 

SCC-Ag, ng/ml 20.1% 280 96.4% 591 34.7% 92.7% 

CA 15-3 U/ml 23.5% 327 98.5% 604 36.2% 97.3% 

NSE, ng/ml 19.4% 270 99.3% 609 35.2% 98.5% 

ProGRPpg/ml 26% 362 91.2%559 35.2% 87.1% 

COMBINED ASSESSMENT     

≥1 abnormal TM value (six tumour 

markers) 
89.44% 1245 63.95% 392 72.3% 84.9% 

Algorithm 87.7% 1223 75.5% 463 

 

73.03% 89.06% 
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=

8

8 

=

2

6 

4 =

67 

0 

CEA ng/ml 2.4 [1.3-
3.8] 

NS 3.1 [2.1-7.5] 2.2 [1.2-
3.3] 

0.001 3.7 [2.2-7.9] 2.2 [1.4-3.8] 0.001 4.6 [2.5-
12.1] 

CYFRA 21-1 
ng/ml 

1.7 [1.3-2.4] 0.001 2.9 [1.6-4.3] 1.9 [1.4-
2.7] 

0.001 2.8 [1.6-3.8] 1.7 [1.3-2.3] 0.001 3.8 [2.3-7.1] 

SCC-Ag ng/ml 1.1 [0.9-1.4] NS 1.2 [0·8-1.6] 1.1 [0.8-
1.5] 

0.054 1..2 [0.9-1.7] 1.1 [0.9-1.5] 0.001 1.6 [1-3] 

CA 15-3 U/ml 14 [9.6-19.8] 0.012 21.4 [12.9-
31.8] 

15 [10-21] 0.01 16.2 [11.5-
25] 

13.5 [9-20.8] 0.001 19[13-27] 

NSE ng/ml 12 [10-14] NS 12 [9.2-19] 12 [10-
14.9] 

0.03 12 [10.5-18] 12 [10.1-
14.8] 

0.001 14.1 [11.6-20] 

ProGRPpg/ml 39 [29.3-51] 0.076 49 [25.8-66] 35 [26-
46.8] 

0.009 43 [31.5-
61.1] 

33 [23.2-
44.3] 

0.001 42.8 [30-66] 

 
NS: non-significant. 
 
 
 
 
 
 
 
 
Table 5. Confusion matrix comparing algorithm-suggested histological classifications with definitive 
final diagnosis. Absolute frequencies are shown for each diagnostic category (no cancer, SCLC, 
uNSCLC, ADC, SCC), along with the percentage of patients with cancer (% patients with cancer) and 
concordance rates for each group. 
 

  

  Histology 

Tot
al 

Suggested vs 
diagnosed 

Suggested vs 
diagnosed 

*uNSCLC and 
ADC  

No 
can
cer 

SC
LC 

NSC
LC uNSC

LC 
AD
C 

SC
C 

Concord
ance  
with 

cancer 

Concord
ance 
with 

histology 

%patie
nts 
with 

cancer 

Concorda
nce 

  

Classific
ation 
algorithm 

no 
cance
r 

464 13 158 24 99 35 
63
5 

26,9 73.1% 
    

  

SCLC 4 224 21 4 11 6 
24
9 

98,4 90.0% 
    

  

NSCL
C 

65 19 869 131 
48
6 

25
2 

95
3 

93,2 91.2%  
    

  

uNSC
LC 

16 6 131 30 66 35 
15
3 

89,5 19.6% 
    

  

ADC 28 11 488 72 
37
2 

44 
52
7 

94,7 70.6% 93.5% 
79,41176

471 
  

SCC 21 2 250 29 48 
17
3 

27
3 

92,3 63.4% 
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Moder
ate 
risk 
NSLS
C 

56 7 52 10 20 22 
11
5 

51.3% 8.7% 

    

  

moder
ate 
risk 
ADC 

23 2 25 3 19 3 50 54.0% 38.0% 

    

  

moder
ate 
risk 
SCC 

1 1 1 0 0 1 3 66.7% 33.3% 

    

  

Total 613 266 1126 172 
63
5 

31
9 

20
05         

  

    
 
SCLC Small cell Lung cancer; NSCLC no-small cell Lung cancer uNSCLC unclassified NSCLC; ADC 
adenocarcinoma; SCC Squamous cel carcinoma  
*indicate patients suggested by algorithm as unclassified NSCLC and ADC and diagnosed as uNSCLC or ADC 
when algorithm suggest ADC or uNSCLC the prediction of cancer is 93.5% and the concordance 79.4%  
 
 
 
 
Table S1 
 
Sensitivity, specificity, PNV and PPV and according to centre  
 

Hospital N Sensitivity Specificity NVP PPV Accuracy 
1 613 84% 81% 72% 90% 83% 
2 94 90% 77% 82% 85% 84% 
3 46 90% 71% 56% 95% 87% 
4 351 82% 68% 64% 84% 77% 
5 155 88% 87% 44% 98% 88% 
6 320 94% 78% 80% 93% 90% 
7 160 92% 67% 84% 81% 82% 
8 5 83% 100% 67% 100% 87% 
9 96 87% 78% 58% 94% 85% 

10 20 94% 75% 75% 93% 90% 
11 105 81% 98% 81% 98% 89% 
12 36 88% 80% 72% 92% 86% 
All 2005 88% 76% 73% 89% 84% 

 
1. Hospital Clinic De Barcelona; 2  Althaia Xarxa Assistencial Universitaria de Manresa; 3 León University 
Healthcare Complex 4 Hospital Universitario de Donostia; 5 Hospital Universitario Virgen del Rocío, 6 
Hospital Universitario Virgen de la Macarena; 7 Hospital San Juan de Dios de Sevilla, 8 University 
General Hospital of Alicante; 9 Hospital Universitario de Burgos; 10 Centro Hospitalar Universitario 
Lisboa Central; 11 Hospital general de Segovia; 12 University Hospital Lozano Blesa de Zaragoza 
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Table S2 

Homogeneity between different all centres.  

  Q Statistic df p-value I2 

Sensitivity  27.25 11 0.005 59.6% 

Specificity  18.06 11 0.081 39.0% 

          
Homogeneity between different centres with less than 20% of early stage 

  

  Q Statistic df p-value I2 

Sensitivity  7.79 7 0.352 10.2% 

Specificity  12.01 7 0.100 41.7% 

          
Homogeneity between different centres with more than 25% of early stage 

   

  Q Statistic df p-value I2 

Sensitivity  1.96 3 0.581 0.0% 

Specificity  4.79 3 0.188 37.4% 

 
Heterogeneity analysis was performed using Cochran's Q test for all comparisons. The Q statistic is the Chi-
squared value, with df representing the degrees of freedom (n−1). The I 2 statistic quantifies the percentage of total 
variation that is due to true heterogeneity between centres rather than chance. Centres were classified into clinical 
subgroups based on the proportion of patients with early-stage disease (IA, IB, IIA, IIB). 
 
 
 
 
 
 
Table S3 

 

Distribution of patients according to stage among the centres 
 

Hospital % early stage 
(IA, IB, IIA, IIB) 

% advanced disease 
(IIIA, IIIB, IV) 

1 25.0 75 
2 15.4 84.6 
3 12.8 87.2 
4 26.4 73.6 
5 15.0 85 
6 12.0 88.0 
7 13.4 86.6 
8 0.0 100 
9 17.9 12.1 
10 37.0 63.0 
11 13.1 86.1 
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12 30,8 69.2 
 

1. Hospital Clinic De Barcelona; 2  Althaia Xarxa Assistencial Universitaria de Manresa; 3 León University 
Healthcare Complex 4 Hospital Universitario de Donostia; 5 Hospital Universitario Virgen del Rocío, 6 
Hospital Universitario Virgen de la Macarena; 7 Hospital San Juan de Dios de Sevilla, 8 University 
General Hospital of Alicante; 9 Hospital Universitario de Burgos; 10 Centro Hospitalar Universitario 
Lisboa Central; 11 Hospital general de Segovia; 12 University Hospital Lozano Blesa de Zaragoza 

 


