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a b  s t  r a  c t

In  this  narrative  review, we  address the ongoing  challenges  of lung  cancer (LC)  screening  using chest

low-dose  computerized  tomography  (LDCT)  and  explore  the  contributions  of artificial  intelligence  (AI),

in overcoming them. We focus on  evaluating  the  initial  (baseline)  LDCT  examination,  which  provides

a  wealth  of  information relevant  to the  screening  participant’s  health. This  includes  the  detection of

large-size  prevalent LC  and  small-size  malignant  nodules that  are  typically  diagnosed as  LCs upon

growth  in subsequent  annual  LDCT  scans.  Additionally,  the  baseline LDCT  examination  provides valuable

information about smoking-related  comorbidities,  including cardiovascular disease,  chronic obstructive

pulmonary disease,  and interstitial  lung  disease (ILD),  by  identifying relevant  markers.  Notably,  these

comorbidities,  despite  the  slow  progression of their markers,  collectively  exceed LC as  ultimate  causes

of death at follow-up in  LC screening participants.  Computer-assisted  diagnosis  tools currently improve

the  reproducibility  of radiologic readings and  reduce  the  false negative  rate  of  LDCT. Deep learning  (DL)

tools that  analyze  the  radiomic  features  of  lung  nodules are  being developed  to distinguish  between

benign  and  malignant  nodules.  Furthermore,  AI  tools  can predict  the  risk of  LC in the  years  following a

baseline  LDCT.  AI tools  that  analyze baseline LDCT  examinations  can  also  compute  the  risk of cardiovas-

cular disease  or  death,  paving  the  way for  personalized  screening  interventions.  Additionally,  DL  tools  are

available  for  assessing  osteoporosis  and ILD, which  helps  refine the individual’s  current  and  future  health

profile.  The primary  obstacles to AI  integration  into  the  LDCT  screening  pathway  are the  generalizability

of performance and the explainability.

©  2024  The Authors.  Published by  Elsevier  España,  S.L.U.  on behalf of SEPAR.  This  is  an open  access

article under  the  CC  BY license  (http://creativecommons.org/licenses/by/4.0/).

Lung Cancer Screening

Lung cancer (LC) is the leading cause of cancer-related deaths

worldwide.1 While smoking and age are the primary risk  factors

for LC, making smoking cessation the main preventive measure,

two randomized clinical trials – the National Lung Screening Trial

(NLST)2 in the US and the NELSON3 in Europe – have demonstrated

that annual screening with low-dose computed tomography (LDCT)

significantly reduces mortality from LC compared to annual chest

X-rays or no screening. Consequently, LC screening with annual

LDCT is recommended for smokers or former smokers aged 50–80

years.4,5 However, the reduction in LC mortality associated with

LDCT screening is modest. A meta-analysis of nine trials reported an
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average relative risk of 0.84 for LC mortality (95% CI:  0.76–0.92) in

LDCT-screened subjects compared to  non-screened subjects.6 This

justifies efforts to enhance LC  screening with LDCT by  addressing

its persistent challenges7,8 in  selecting subjects for screening,9–13

improving the LDCT screening examination,3,10–18 and incorpo-

rating other biomarkers from plasma, serum, sputum, or exhaled

breath (Table 1).11–17

This article aims to review the established achievements and

ongoing efforts in  addressing some challenges of LC screening

through artificial intelligence (AI) applications. Specifically, we

focus on AI tools that evaluate the baseline LDCT, which is the most

crucial examination in  the LC screening regimen from an individual

health perspective.

The Pivotal Role of Baseline LDCT for LC Screening

Participants in LC screening programs typically undergo annual

LDCT examinations and, if  abnormalities are found, further tests
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Table  1

Challenges of LC Screening With LDCT.

Main Challenge Sub-challenges Options

Selection of subjects to  be screened LC risk stratification

Recruitment method General practitioner or pneumonologist – driven

Self-referral via internet or phone

Smoking-related comorbidities Chronic obstructive pulmonary disease

Cardiovascular disease

LDCT screening examination Frequency Annual

Biennal

Logistic organization Centralized

Distributed

Hospital-centered

Mobile CT units

Decrease of false negative and false positive tests

Validation of ultralow (<1 mSv) dose acquisitions

Roles of other biomarkers in plasma, serum,

sputum or exhaled breath

Selection of higher risk subjects before LDCT

Differentiation of benign and malignant nodules after LDCT

Fig. 1. (A–C). Prevalent and pseudo-incidental screen-detected LC at baseline LDCT. Stage IA adenocarcinoma in a 60-year-old man from ITALUNG (A) appearing at baseline

LDCT  as a large (26 mm  in mean diameter) solid nodule in the right upper lobe (*). Pseudo-incidental stage IA squamous cell carcinoma in a  67-year-old man from ITALUNG

(B  and C) appearing at  baseline LDCT (B) as an infra-threshold (5.2 mm  in mean diameter) solid nodule in the left  anterior lobe (white empty arrowhead) and showing growth

(10  mm in mean diameter) at the first annual repeat (C).

to  diagnose or exclude LC. The baseline (first) LDCT is  crucial

for several reasons. First, most LCs diagnosed during the initial

2–4 annual screening rounds are already present in the base-

line LDCT. In particular, screen-detected LCs diagnosed within

the first year following the initial LDCT screening test, defined

as prevalent LCs (Fig. 1),  are typically more numerous (range

55.4–84%) than those diagnosed after the subsequent annual repeat

LDCT screening, defined as incident LCs.2,3,18–22 Moreover, most

(77–80%) incident LCs are already present in baseline (or prior)

LDCT scans20,23 (Fig. 1). However, these “pseudo-incidental” LCs

require time to grow and reach a  size  threshold that qualifies them

as suspicious or actionable nodules, and can ultimately be diag-

nosed as LCs only years after their appearance. The combination

of prevalent and “pseudo-incidental” LCs allows the retrospective

identification of malignant lesions in the baseline LDCT in up to

92% of subjects with screen-detected LCs within the first three-

four years of screening.13,20,24 Awareness of the distribution of

screen-detected LCs is  essential given the expected new start and

adoption of LC screening as a  population-based intervention in

Europe4 and elsewhere. Second, baseline LDCT allows the extrac-

tion of markers of smoking-related comorbidities, such as coronary

artery calcifications (CAC) for cardiovascular disease (CVD) and

pulmonary emphysema for chronic obstructive pulmonary disease

(COPD). In particular, pulmonary emphysema can be assessed using

visual semi-quantitative scales25,26 (Figs. 2 and 3) or quantitatively

with the extraction of several indices using automatic software,

including deep learning (DL) algorithms27–30 (see “CVD, Respi-

ratory and Overall Mortality Prediction” section). Emphysema is

associated with an increased LC incidence,31–33 but, more impor-

tantly, in the perspective of LC screening programs, both CAC and

emphysema indices predict long-term overall, CVD and respiratory

mortality25,34–37 (Figs. 2 and 3). For this reason, in principle, LDCT

assessment of CAC and emphysema allows for screening regimen

personalization9 and early initiation of therapies that can delay

comorbidities progression. A  compelling argument underscoring

the pivotal role of LDCT is that  the assessment of smoking-related

disease markers, such as CAC and emphysema indices, in  the

baseline LDCT provides sufficient prognostic information at the

individual level. In fact, longitudinal studies have shown that only

about 15% of subjects with emphysema, who participated in LC

screening, experienced a  mild progression of emphysema itself.38

Also the progression of CAC is relatively slow, with only one out

of five subjects without CAC developing some within 4–5  years.39

Third, changes consistent with interstitial lung abnormalities (ILA)

or disease (ILD) are observed in  3–10% of subjects undergoing

baseline LDCT40 (Fig. 5). These changes imply a greater risk of

LC and are associated with an increased rate of complications

from LC treatments.41 Detection of these abnormalities, especially

when they extend to at least 5% of the lung parenchyma, justi-

fies referral to a multidisciplinary team to prevent and manage

their progression40,42 (Fig. 5). Fourth, the baseline LDCT can reveal

several additional incidental findings, the most important and fre-

quent being bronchiectasis, consolidations, aortic valve disease,

mediastinal masses, enlarged mediastinal or hilar lymph nodes,
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Fig. 2. (A–F) Diffuse lung disease at baseline LDCT. Advanced destructive pulmonary emphysema (A–C) in a 65-year-old man from NLST who died of respiratory disease

(ICD  code J449) 835 days after randomization. Interstitial lung disease (D–F) in a 73-year-old man  from NLST who died of respiratory disease (ICD code J849 – interstitial

pulmonary disease unspecified) 2462 days after randomization.

Fig. 3. (A and B). Coronary artery calcifications at  baseline LDCT. Severe coronary artery calcifications in the anterior interventricular artery (white empty arrowhead A) and

left  circumflex artery (white empty arrowhead B) at baseline LDCT in a  69-year-old man  from NLST who died of atherosclerotic heart disease (ICD code I251) 226 days after

randomization.

and thyroid abnormalities.40 Fifth, eligible subjects often undergo

baseline LDCT only and then quit the screening program. In fact,

in the US, adherence to the recommended screening intervals

can be as low as 57%, especially among subjects with negative

tests or benign nodules.43 Finally, in the UK LC Screening trial,

which offered just one LDCT to  eligible subjects of the interven-

tion arm,44 a decrease in  mortality from LC was observed in the

screened subjects compared to controls (no screening).6 This ben-

efit might be valuable for deprived world areas where limited

economic resources do not allow serial annual LDCT examina-

tions.

Application of AI to Baseline LDCT for Problem-Solving in LC

Screening

In the usual screening workflow, each LDCT examination under-

goes a  double reading by radiologists, who meticulously examine

them for early signs of cancer,45 focusing on the characteristics of
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the pulmonary nodules, including size, morphology, location, and

change over time. The LDCT examination also allows the oppor-

tunistic assessment of smoking-related comorbidities, especially

emphysema and CVD.46 This makes medical image interpretation

the cornerstone of LC  screening activities, requiring significant

time and expertise.47 With the new USPSTF guidelines expand-

ing the cohort of eligible individuals for LC  screening in the US,48

the already high radiologists workload49 is  expected to  increase

further, making fully manual reporting of LDCT examinations

impractical.

In recent years, the integration of AI  into healthcare has brought

significant changes in  LC screening practice. By leveraging machine

learning (ML) and DL algorithms (see Yu et al.50 for a review),

researchers and clinicians can efficiently harness the vast amounts

of data generated by LDCT to address critical challenges in  LC

screening. This section explores diverse applications of AI in  base-

line LDCT imaging for problem-solving in LC screening.

CAD for Lung Nodules

Detecting lung nodules in LDCT images is central to LC screen-

ing workflows, as it guides participant management. However,

the repetitive nature of this task and the overwhelming volume

of images contribute to  high intra- and inter-observer variabil-

ity and a high false positive rate.51,52 Computer-aided diagnosis

(CAD) systems assist radiologists by automatically identifying sub-

tle findings, thereby mitigating human limitations like memory,

distraction, and fatigue and offering objective data interpretation.53

Computer-aided detection (CADe) systems are  used for detec-

tion, while computer-aided diagnosis (CADx) systems are used for

diagnosis.51,53 CADe systems have been shown to reduce the rate

of false-negative baseline LDCT examinations.3,54–61 Additionally,

they can help detect infra-threshold nodules that do not qualify as

positive according to Lung-RADS,62 but need to be monitored in

subsequent LDCT examinations.29 However, only a  small fraction

(below 1%) of micronodules (<4 mm) evolves into LC,63 indicating

that the specificity of a micronodule at baseline LDCT is extremely

low.

Using CADe for the computation of lung nodule volume

rather than diameters has improved classification of nodules

and decreased the number of indeterminate or false positive

LDCT examinations.64 However, the clinical integration of CADe

remains limited due to persistent concerns over high false posi-

tive rates.65,66 Researchers are addressing this issue through several

strategies. CADe tools may  be  used as pre-screening instruments to

rule out negative LDCT examinations, allowing radiologists to con-

centrate on more challenging and suspicious cases.67,68 Another

strategy involves integrating more data into the models. For exam-

ple, a ‘collaborative CAD’ system incorporating radiologists’ gaze

patterns into a 3D multi-task convolutional neural network (CNN),

a particular DL architecture,69 achieved a  97% classification accu-

racy in identifying nodules.70

In LC screening, it is  crucial to distinguish between benign lung

nodules, which constitute the vast majority observed in  low-dose

CT scans of screened subjects according to  Lung-RADS v2022,62

and malignant lung nodules. This differentiation often leads to

additional examinations, such as follow-up LDCTs at intervals of

1–3–6 months, FDG-PET,71 and invasive procedures, significantly

increasing both the costs and potential harms associated with

screening.7 Notably, malignant nodules demonstrate an increase

in size, density, or  both over subsequent 3 or 6-month follow-up

LDCT scans, as outlined in Lung-RADS v2022.62 The calculation of

volume doubling time (VDT) serves as a  practical and effective

method to assess nodule growth characteristics and malignancy

risk.64 The Lung-RADS guidelines recommend specific manage-

ment strategies for baseline LDCT-detected nodules, particularly

solid non-calcified nodules ≥6 mm  in diameter or  ≥113 mm3 in

volume, which helps streamline further investigations aimed at

confirming malignancy and minimizing unnecessary procedures.72

Furthermore, this differentiation can be enhanced by  integrating

LDCT features such as nodule size and density, the number of nod-

ules, and presence of emphysema, with pertinent subject history,

as incorporated in  the PanCan/Brock model,73,74 or  with biomarker

results such as plasma DNA methylation75 or plasma total cfDNA.13

However, the PanCan/Brock model has been developed, tested,

and calibrated specifically for prevalent solid nodules ≥6 mm in

diameter.73,74,76 It  may not be well-suited for newly appearing nod-

ules  detected at next LDCT screening rounds.76 Additionally, this

model may  not  effectively identify malignant micronodules, poten-

tially leading to  the delayed (“pseudo-incidental”) LC diagnosis.

Therefore, DL algorithms predicting LC based on baseline LDCT and

radiomics77–80 may  improve the characterization of  these small

nodules. For example, an ML  approach combining epidemiological,

clinical and radiomic features, extracted from the nodules present

at baseline LDCT, was able to predict the nodule’s malignancy

risk score with an area under receiving operator curve (AUROC)

of 0.93, outperforming the PanCan/Brock model and with optimal

performance for both solid and sub-solid nodules.81 Still, a gener-

ative approach to enhance the characterization of indeterminate

nodules from the baseline LDCT scan80 exploited a  growth model

based on the Wasserstein generative adversarial network frame-

work (GP-WGAN) to predict the nodule growth patterns in the

1-year follow-up LDCT scans. By leveraging the ability of  GANs to

generate data similar to  the original, they can simulate follow-up

LDCT examinations requiring only the baseline LDCT as input. The

results demonstrated that the generated follow-up nodule images,

when used as input to a model for LC  malignancy prediction,

achieved performance comparable to  using real follow-up nodule

images (AUROC of 0.82 ± 0.02 for generated nodules, compared to

0.86 ± 0.02 for real nodules).80

LC Risk Stratification

For LC screening to be effective and minimize related harms, it

is crucial to  carefully select the at-risk population.49 Once selected,

LDCT examination information allows for valuable risk stratifica-

tion, enabling a  tailored screening schedule.82 Several models for

estimating LC risk have incorporated baseline LDCT findings.83–85

Their implementation is hindered by limited external validation

and the need for manual input of LDCT findings into the model to

calculate the score. Unlike traditional models, AI-based algorithms

autonomously analyze the entire LDCT volume, identify lung nod-

ules and incidental findings, and combine this information with

demographic data to  generate a  comprehensive, automated risk

score.

The Google DL model evaluates LDCT examinations to predict LC

incidence. It extracts local and global features from the current, and

optionally prior, LDCT examinations and estimates the likelihood

of a LC diagnosis within a year.86 Despite achieving a  high AUROC of

0.959 on single LDCT examination and outperforming radiologists,

the model was criticized for its ‘black-box’ nature, lack of source

code availability, and small validation set.87

DeepScreener is a  DL algorithm designed to predict a patient’s

cancer status from CT  scans through three tasks: nodule segmenta-

tion, nodule-level classification and patient-level classification.88,89

For  each nodule, the nodule-level classifier extracts morphological,

textural and other features and combines them with the nodule

location to calculate a  risk score. Subsequently, the patient-level

classifier aggregates the risk scores of all detected nodules to gen-

erate an overall risk score for the patient and determine the label

(“cancer” or  “no cancer”). The model achieved an AUROC of 0.89
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Fig. 4. (A–E) Assessment of risk of LC in the next 1–6 years based on the analysis of baseline LDCT with the Sybil deep learning algorithm.90 (A) Prediction of a  very low

probability of LC after 1 year (risk score =  0.0109) and 6 years (risk score =  0.0831) since baseline LDCT in a  59-year-old man from NLST with a small infra-threshold (1.8 mm

in  mean diameter) solid benign nodule in the right upper lobe (white arrow) at baseline LDCT who  was  alive 11 years after randomization. (B and C)  Prediction of a  moderate

probability of LC after 1 year (risk score =  0.3057) and 6 years (risk score =  0.5998) since baseline LDCT in a  56-year-old woman from NLST with a  small infra-threshold (3.8 mm

in  mean diameter) (black arrow) solid nodule in the left upper lobe at  baseline LDCT (B) which showed growth (9 mm in mean diameter) at the annual LDCT performed

two  years later (C) consistent with a pseudo-incidental LC and who  received a  diagnosis of stage IA adenocarcinoma and was  alive 11  years after randomization. (D and E)

Prediction of a  very low risk of LC after 1 (risk score = 0.0017) and 6  years (risk score = 0.0329) since baseline LDCT in a 57-year-old woman from NLST with a  negative baseline

LDCT  (D) who  showed a  large (18 mm in mean diameter) solid lesion (*) at the next annual LDCT (E) consistent with an  incident LC who received a  diagnosis of small cell

carcinoma and died of LC (ICD code C349) 1559 days after randomization.

and a sensitivity of only 42.4%, indicating that further refinement

and validation are needed.89

Sybil, a DL model designed to predict using a  0–1 score the LC risk

from a single LDCT examination up  to  the next six years, without

the need for radiologist annotations or additional data, represents a

recent advancement.90 It  achieved AUROC for LC  prediction at one

year of 0.86–0.94 in three different datasets. Interestingly, when

Sybil predicts high LC risk, the used signal localizes to  specific

at-risk regions rather than being equally spread over the entire

thorax.90

DL algorithms such as Sybil could be used to stratify the risk of LC

after a baseline LDCT and could be particularly valuable in providing

the LC risk in a screened subject showing infra-threshold nodules,

that correspond to  benign or  pseudo-incident LC, or, after a  nega-

tive baseline LDCT, anticipating interval or incident LC. Examples

of application of the Sybil algorithm are shown in  Fig. 4.

CVD, Respiratory and Overall Mortality Prediction

Tobacco smoking is  a well-established risk factor for CVD, COPD,

and LC. In LC screening cohorts, which primarily include current

and former smokers, these conditions are the leading causes of

death,2,3,91,92 and are often referred as the ‘Big 3 killers’. Using

AI to extract comorbidity-related biomarkers from baseline LDCT

images offers a valuable opportunity to  enhance LC screening.

AI can help optimize screening schedules – such as determin-

ing when to start, how frequently to screen, and when to  stop –

by refining individual risk profiles.9 Although radiologists’ visual

scoring of comorbidities provides adequate predictive values25,35

(Figs. 2 and 3), AI-derived biomarkers offer greater robustness and

objectivity, all without increasing the clinician’s workload.93 One

significant proof of this concept is a  DL algorithm for the auto-

matic quantification of coronary calcium.94 The resulting calcium

scoring showed a  high correlation with readings from expert radi-

ologists and demonstrated robust test-retest accuracy.94 Beyond

using AI-derived CAC as a predictor of CV events in LC screening

cohorts,94–97 researchers are exploring additional approaches. For

instance, a model was developed that based on the extraction of the

coronary calcium and juxta-cardiac fat  uses a single LDCT exami-

nation and provides a 0–1 score to estimate the probability of CVD

risk.98 The model’s ability to predict the risk of CVD and CV mortal-

ity equalized or surpassed that of radiologists and surpassed that

of other state-of-the-art DL tools.94,98,99 Examples of its application

to predict CV death in subjects with no or mild CAC are shown in

Fig. 5. Other DL-derived indices include the prediction of adverse

events based on the left atrial volume100 and of CV risk based on

epicardial adipose tissue amount alone.101

COPD is  typically diagnosed and evaluated through symp-

tom assessment, spirometric testing, and tracking respiratory

exacerbations.102 While lung densitometry is  more reproducible

than visual assessment of emphysema103 and is  increasingly used

for COPD assessment,29,31,104 it is  notably sensitive to variations

in CT  scanners and acquisition/reconstruction parameters, such as

slice thickness, radiation dose, and reconstruction kernel.105 A two-

step DL model was  developed to normalize the kernel effect for

emphysema quantification in LDCT Images.105,106 This tool allows

accurate emphysema quantification even when images are recon-

structed using different kernels, thus improving consistency across

large screening trials.105

Combining quantitative and semi-quantitative biomarkers for

CVD and COPD in risk stratification after LDCT examinations is gain-

ing attention. A  logistic regression model that integrates participant

demographics with LDCT measures of LC, CVD and COPD was  devel-

oped to predict the 5-year risk of competing death. This approach

helps identify individuals who may  benefit more from preventive

care for other conditions than from LC screening.107 The results

suggest that a model based exclusively on quantitative LDCT mea-

sures, even when automatically derived, is  suitable for calculating

risk scores in a  LC screening cohort and informing the post-LDCT

screening process. Similarly, the predictive value of CAC visual score

and of densitometry assessment of emphysema (relative area of

the lung with density below −950 Hounsfield Units – RA950) in

baseline LDCT along with age, gender, smoking status and pack-

years were evaluated to predict the overall, LC, and CVD mortality

in a screening cohort.36 Using an ML paradigm based on decision

trees108 and the SHAP framework109 to  assess the importance of

each feature, the model interpretation revealed that RA950 was the

first ranking feature for predicting overall and CVD mortality, with

AUROC values of 0.70 and 0.73, respectively. The most important

features for predicting LC mortality were pack-years and RA950,

with an AUROC of 0.61.

Osteoporosis Assessment

COPD is  frequently associated with other extra-pulmonary sys-

temic manifestations, including osteoporosis,110 that leads to  an

increased risk of fractures.111 Since bone attenuation measured on

routine chest CT  has shown strong correlation with bone mass den-

sity (BMD) assessed by dual-energy X-ray absorptiometry (DXA)

in  patients with COPD,112 opportunistic DL-aided assessment of

osteoporosis in  LDCT scans in LC screening cohorts has emerged.
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Fig. 5. (A and B) Assessment of risk of CV disease based on the  analysis of baseline LDCT with Chao et  al. deep learning algorithm.98 The  algorithm attributes a  moderate

(score = 0.351) CV risk in a  55-year-old man  from  NLST who  did not show any coronary artery calcification at  baseline LDCT (A) and who died of ischemic heart disease (ICD

code  I250) 2004 days after randomization. The algorithm attributes a high (score = 0.700) CV risk in  a  70-year-old woman from NLST with mild coronary artery calcifications

(white  arrow) at baseline LDCT (C) and who died of acute myocardial infarct (ICD  code I219) 511 days after randomization.

Different approaches have been proposed. A DL model was com-

bined with geometric operations to automatically measure BMD

from LDCT scans achieving a  good agreement with quantitative

CT.113 AI-RAD Companion was evaluated as an end-to-end solu-

tion to derive a  LDCT biomarker for osteoporosis in LC screening

whose score moderately correlated with WHO  T-scores allowing

to stratify participants into normal, osteopenia, and osteoporosis

categories.114 Additionally, the combination of ML with radiomics

texture analysis of automatically detected vertebral body achieved

an AUROC of 0.90 and 0.72 on internal and external validation

cohorts, respectively,115 establishing that osteoporosis can be part

of the evaluation of LDCT for LC  screening with impacts on morbid-

ity, mortality, and the overall efficacy of LC screening.

Classification and Prediction of ILD Evolution

Recently, several studies have demonstrated the capability of

DL algorithms to  help classify the ILD detected in full dose thin-

section CT116–119 and, more importantly, to predict the progression

of the disease and the mortality due to this condition.120–122 Vali-

dation of these algorithms in  the LDCT examinations performed for

LC screening is still required.

Conclusions

While numerous AI models have  been developed for LC  screen-

ing, significant challenges remain that hinder their effective

integration into clinical practice. Key issues include the general-

izability of AI models across different populations – complicated

by the limited availability of open-access datasets –,  the explain-

ability of AI decisions,47,52,65,123,124 and the assessment of AI  tools

deployment. These concerns have been extensively discussed in

recent literature,125–129 highlighting the urgent need for ongoing

research and collaboration in this rapidly evolving field.
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