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Introduction:  Lung cancer (LC)  remains  a leading  cause  of cancer  mortality  worldwide,  underscoring

the  urgent  need for  novel therapeutic  targets.  The  integration  of Mendelian  randomization  (MR)  with

proteomic data  presents  a novel approach to  identifying potential  targets for  LC  treatment.

Methods:  This  study utilized  a proteome-wide  MR  analysis,  leveraging  publicly  available data  from

genome-wide association  studies  (GWAS)  and  protein  quantitative trait  loci (pQTL) studies. We  ana-

lyzed  genetic association  data  for  LC from  the  TRICL-ILCCO  Consortium  and proteomic  data  from  the

Decode cohort.  The MR framework  was employed  to  estimate the  causal effects  of specific  proteins  on LC

risk,  supplemented  by  external validation,  co-localization analyses, and exploration  of protein–protein

interaction  (PPI) networks.

Results: Our  analysis  identified  five  proteins (TFPI, ICAM5, SFTPB, COL6A3,  EPHB1)  with  significant asso-

ciations  to LC risk.  External  validation  confirmed the  potential therapeutic  relevance  of ICAM5 and

SFTPB. Co-localization  analyses  and PPI network  exploration  provided further insights  into  the  biological

pathways  involved and  their  potential  mechanistic  roles  in LC pathogenesis.

Conclusion:  The study  highlights  the  power  of integrating genomic  and  proteomic  data  through MR  anal-

ysis to  uncover  novel therapeutic  targets for  lung  cancer.  The identified proteins,  particularly  ICAM5  and

SFTPB,  offer promising  directions  for  future  research  and  development  of targeted  therapies,  demon-

strating the  potential to  advance personalized  medicine  in lung  cancer treatment.

©  2024  SEPAR. Published by  Elsevier España,  S.L.U. All  rights  are  reserved,  including those for  text

and  data  mining,  AI training,  and similar  technologies.

Introduction

Lung cancer (LC) has emerged as the leading cause of cancer-

related mortality globally, with approximately 75% of patients

diagnosed at an advanced stage.1 Although current therapies offer

some benefits, the overall efficacy, particularly of chemotherapy,

remains suboptimal, with response rates under 50%.2 Moreover,

resistance to targeted therapies, exemplified by  alterations in  EGFR,

RAS/RAF/PI3K, and mTOR pathways, represents a  significant hur-

dle, undermining the effectiveness of existing treatments.3 Thus,

there is an urgent need for innovative strategies that can overcome

these challenges and improve patient outcomes.
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The integration of genome-wide association studies (GWAS)

with molecular biology offers a promising avenue for identify-

ing and validating new therapeutic targets for LC. In  this context,

Mendelian randomization (MR) emerges as a powerful tool, using

genetic variations as instrumental variables to infer causal rela-

tionships between potential drug targets and cancer outcomes.4–6

Such insights are invaluable for prioritizing targets with a  stronger

genetic rationale, potentially accelerating the transition from dis-

covery to clinical application.7

Recent advances in proteomics and MR  have opened new fron-

tiers in oncology, enabling the identification of novel targets for

a range of cancers, including prostate and breast malignancies.8,9

However, the application of these technologies in lung cancer, par-

ticularly through integrating protein quantitative trait loci  (pQTL)

data with GWAS findings, remains underexplored.

This study aims to bridge this gap by leveraging pQTL data

from the Decode Consortium10 and patient data from the TRICL-

ILCCO consortium11 to  identify plasma proteins that  could serve as
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Fig. 1. Flowchart illustrating the proteome-wide identification of novel therapeutic target proteins for lung cancer based on Mendelian randomization analysis.

viable therapeutic targets for LC. By employing a comprehensive

analytical framework, including Bayesian co-localization, reverse

causality assessment, and external validation with data from a

European ancestry cohort12 and recent findings by  Zheng et al.,13

this research endeavors to  provide new insights into the molecular

underpinnings of LC  and identify potential avenues for therapeutic

intervention.

Methods

Our investigation utilized a  MR  approach to identify potential

therapeutic targets for LC, drawing upon publicly available pro-

teomic and genomic data. Our analytical strategy is  rooted in robust

ethical standards, with all utilized data previously subjected to  eth-

ical approval and participant consent processes in  their original

studies.

Instrument construction and data acquisition

We  leveraged lung cancer genetic associations from 29,863

patients and 55,586 controls, provided by  the TRICL-ILCCO

Consortium.11 Proteomic data, encompassing 4907 plasma pro-

teins from 35,559 participants, was sourced from the Decode

cohort.10 Our criteria for pQTL selection were stringent, focusing

on cis-pQTLs to ensure specificity and relevance to LC  pathophysi-

ology. Fig. 1 shows the framework of our research.

Mendelian randomization and validation processes

Employing the two-sample MR  framework, we estimated the

causal impact of identified proteins on LC risk, using Inverse Vari-

ance Weighted (IVW) methods for robust inference.14 Validation

was pursued through external cohorts and additional MR analy-

ses, with attention to  the coherence and consistency of genetic

instruments and their associations with LC risk.

Analytical rigor and secondary analyses

To assess the validity of our causal inferences, we  conducted

heterogeneity checks, Steiger filtering, and explored reverse causal-

ity scenarios.15 Concordance between protein functions and LC

risk  was further scrutinized via co-localization analysis, ensuring

that observed associations were not artifacts of underlying genetic

confounding.16,17

Functional insights and network analyses

Single-cell RNA sequencing data offered a  nuanced view of pro-

tein expression in the lung microenvironment,18 while phenotype

scanning provided context regarding the systemic relevance of

these proteins.19 We integrated our results with protein–protein

interaction (PPI) networks using databases like STRING and Drug-

bank to explore potential interactions and their therapeutic

implications.20,21

For an in-depth description of our methodologies, including

the criteria for pQTL selection, statistical analysis parameters,

and detailed procedural steps, readers are referred to the

Supplementary Material.

Results

Identification of lung cancer-associated proteins through

proteome analysis

Our rigorous application of the Bonferroni correction method

unearthed significant associations between LC susceptibility and

seven specific plasma proteins, as illustrated in  our analytical out-

comes (Table 1). These proteins include Tissue Factor Pathway

Inhibitor (TFPI), Intercellular Adhesion Molecule 5 (ICAM5), Surfac-

tant Protein B  (SFTPB), Collagen Type VI Alpha 3 Chain (COL6A3),

Ephrin Type-B Receptor 1 (EPHB1), Ribonuclease T2 (RNASET2),

and Isovaleryl-CoA Dehydrogenase (IVD). Notably, elevated levels

of ICAM5, SFTPB, and EPHB1 were associated with a  reduced risk

of LC, while higher concentrations of TFPI, COL6A3, RNASET2, and

IVD correlated with increased LC risk. The consistency across anal-

yses affirmed the absence of heterogeneity (Supplementary Table

1), bolstering the reliability of these protein-LC risk associations.

Sensitivity analysis and validation of identified proteins

Subsequent sensitivity analyses, including Steiger filtering, reaf-

firmed the reliability of our MR  findings, underscoring a  consistent

causal directionality (Table 2). Bidirectional MR  analysis revealed

on causal relationship between LC and the protein levels of  TFPI,

ICAM5, SFTPB, COL6A3, or EPHB1 (all P >  0.05). RANSET2 revealed

undefined directional causal effects with a  P value of 0.034, 0.026,
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Table  1

Mendelian randomization results for proteins of Decode cohort significantly related to  lung cancer.

Protein cis-acting SNP UniProt Effect allele Other allele OR (95% CI) p value (IVW) F  statistics PVE

TFPI rs116350534 P10646 G T 2.12 (1.55, 2.88) 1.94e−06 50.38 2.35e−03

ICAM5 rs281439 Q9UMF0 G C  0.95 (0.92, 0.97) 2.94e−05 9819.26 7.99e−02

SFTPB rs1130866 P07988 A G  0.88 (0.85, 0.92) 6.36e−09 3086.10 7.99e−02

COL6A3 rs11677932 P12111 A G  1.74 (1.36, 2.23) 1.23e−05 72.42 3.32e−03

EPHB1 rs185257 P54762 A C  0.86 (0.81, 0.91) 4.01e−07 1447.40 6.64e−02

RNASET2 rs3756838 O00584 A G  1.16 (1.09, 1.24) 1.02e−05 1028.92 4.90e−02

IVD rs12902310 P26440 C T 1.46 (1.25, 1.69) 1.10e−06 199.87 1.01−e02

SNP: single-nucleotide polymorphism; OR: odds ratios; CI: confidence interval; PVE: proportion of variance explained; TFPI, Tissue Factor Pathway Inhibitor; ICAM5, Inter-

cellular  Adhesion Molecule 5; SFTPB, Surfactant Protein B; COL6A3, Collagen Type VI Alpha 3 Chain; EPHB1, Ephrin Type-B Receptor 1; RNASET2, Ribonuclease T2; IVD,

Isovaleryl-CoA Dehydrogenase; IVW, inverse-variance weighted.

Table 2

Overview of Steiger filtering analyses, Bayesian co-localization analysis, and reverse causality detection on seven candidate target proteins.

Protein Uniport SNP Steiger direction Steiger P  value Bidirectional MR P  value Co-localization PPH4

TFPI P10646 rs116350534 TRUE 5.42e−04 0.248 0.871

ICAM5 Q9UMF0 rs281439 TRUE 2.36e−204 0.147 0.916

SFTPB P07988 rs1130866 TRUE 3.69e−196 0.345 0.856

COL6A3 P12111 rs11677932 TRUE 2.82e−41 0.537 0.869

EPHB1 P54762 rs185257 TRUE 1.79e−163 0.097  0.950

RNASET2 O00584 rs3756838 TRUE 4.00e−120 0.034  0.719

IVD  P26440 rs12902310 TRUE 4.42e−21 0.032  N/A

SNP: single-nucleotide polymorphism; TFPI, Tissue Factor Pathway Inhibitor; ICAM5, Intercellular Adhesion Molecule 5; SFTPB, Surfactant Protein B; COL6A3, Collagen Type

VI  Alpha 3 Chain; EPHB1, Ephrin Type-B Receptor 1; RNASET2, Ribonuclease T2; IVD, Isovaleryl-CoA Dehydrogenase; N/A, not applicable.

and 0.781 in IVW, MR-Egger and weighted median model, respec-

tively. IVD exhibited a reverse causal effect with a  P value of

0.032, 0.041, and 0.005 in  IVW, MR-Egger and weighted median

method, respectively. To further refine causal credit, we excluded

IVD proteins from subsequent analyses. Bayesian co-localization

then confirmed the shared genetic variations linked to LC risk, offer-

ing a robust foundation for their causal inference (Supplementary

Fig. 2).

External confirmation of therapeutic protein targets

By leveraging additional datasets for external validation, we cor-

roborated the relevance of EPHB1, ICAM5, RNASET2, SFTPB, and

TFPI to LC risk, echoing findings from an independent cohort study

by Battram et al. The robust associations affirmed through sig-

nificant single nucleotide polymorphisms (SNPs) in the validation

cohorts (Table 3,  Supplementary Fig. 3)  particularly emphasized the

roles of ICAM5 and SFTPB, underscoring their therapeutic potential

(Fig. 2).

Single-cell RNA sequencing elucidation

Our deep dive into single-cell RNA sequencing data revealed

nuanced expressions of ICAM5 and SFTPB within diverse lung cell

populations, offering a  granular view of their biological milieu.

Despite ICAM5s ubiquitous presence, SFTPB’s enrichment in  alve-

olar type II cells highlighted its specific pathophysiological context

within lung tissue, spotlighting its potential as a therapeutic target

(Fig. 3).

Integrative analysis with pharmaceutical interventions

Our investigation extended to delineate the connectivity

between our identified proteins and established LC therapeutic

pathways. Particularly, interactions between TFPI and VCAM1,

as well as EPHB1’s association with the Eph/Ephrin signaling

axis, unveiled potential novel intervention points. While EPHB1

has already garnered attention for its therapeutic applicability,

COL6A3’s interaction with known LC targets signals uncharted

therapeutic territory, warranting further exploration (Fig. 4,

Supplementary Table 3).

Discussion

Our pioneering study leverages blood proteome data along-

side bidirectional Mendelian randomization and Bayesian co-

localization to  delineate potential therapeutic proteins impli-

cated in lung cancer pharmacodynamics. Among the identified

candidates—TFPI, ICAM5, SFTPB, COL6A3, and EPHB1—ICAM5 and

COL6A3 have been corroborated in external cohorts, underlin-

ing their therapeutic relevance. ICAM5 emerges as a  novel target,

heretofore unexplored in the context of LC  therapy, thereby open-

ing new investigational avenues.

The integration of genetic insights to ascertain drug target

efficacy signifies a  paradigm shift in pharmacological inno-

vation, as genetically validated targets demonstrate enhanced

success rates in drug development.4,7 Through meticulous MR  and

co-localization analyses, our investigation validates several pro-

teins associated with LC pathogenesis, substantiating their roles

as prospective therapeutic targets grounded on robust genetic

evidence.10,11,13

Despite rigorous MR  scrutiny across large patient cohorts, our

analysis acknowledges inherent methodological constraints, such

as the risk of horizontal pleiotropy or confounders influencing

genetic instrumental variables. Nonetheless, the careful exclusion

of reverse causality, especially highlighted by the distinct roles of

TFPI, ICAM5, SFTPB, COL6A3, and EPHB1, reinforces their relevance

in LC  etiology.

Interestingly, TFPI, associated with thrombosis and inflam-

mation, holds promise beyond its conventional biological roles,

suggesting potential anti-tumor activity that warrants further

exploration in LC  contexts.22–26 Concurrently, the associations

between LC risk and other proteins like RNASET2 underscore

intricate interplays between inflammatory pathways and cancer

progression, suggesting multifaceted roles in  tumor biology.

The therapeutic landscape of LC, particularly immunotherapy,

remains fraught with challenges, notably the limited efficacy in

certain patient subsets.27 Our findings illuminate potential interac-
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Table  3

External validation of selected protein-lung cancer correlations using mendelian randomization analysis.

Exposure Outcome Beta Se p value

Decode cohort EPHB1 Lung cancer −0.116 0.058  0.044

Decode  cohort ICAM5 Lung cancer −0.089 0.027  8.37E−04

Decode cohort RNASET2 Lung cancer 0.221 0.065  6.56E−04

Decode cohort SFTPB Lung cancer −0.175 0.041  2.19E−05

Decode cohort TFPI Lung cancer 1.538 0.304  4.23E−07

Validation cohort COL6A3 Lung cancer −0.231 0.136 0.090

Validation cohort ICAM5 Lung cancer −0.081 0.024  8.37E−04

Validation cohort SFTPB Lung cancer −0.102 0.024  2.19E−05

TFPI, Tissue Factor Pathway Inhibitor; ICAM5, Intercellular Adhesion Molecule 5; SFTPB, Surfactant Protein B;  COL6A3, Collagen Type VI Alpha 3 Chain; EPHB1, Ephrin Type-B

Receptor  1; RNASET2, Ribonuclease T2.

Fig. 2. Volcano plots of the MR  results for external validation. A and B shown the phenotypic effects of the target proteins in two validation cohort. Horizontal black line

corresponded to Bonferroni correction pairs (p = 3.22 × 10−5). Ln:  natural logarithm; PVE: proportion of variance explained.

Fig. 3. Single-cell RNA sequencing localization analysis of ICAM5 and SFTPB. (A) lung cell clusters (SRA640325; SRS2769051). (B) ICAM5 has no significant single cell level

enrichment in lung tissue (p > 0.05); (C) SFTPB was enriched in pulmonary alveolar type II cell clusters (p =  0.002).
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Fig. 4. PPI network between the potentially target proteins and current medication inhibitors for lung cancer.

tions between identified proteins and known LC targets, suggesting

alternative therapeutic strategies. For  instance, EPHB1’s linkage

to the Eph/Ephrin signaling implicates it in  key cancer processes,

advocating its potential as an actionable target.28–32

Additionally, our exploratory analyses intimate at the utility of

SFTPB and ICAM5 as putative markers and modulators within the

LC microenvironment, potentially informing targeted therapeutic

interventions.33,34 Such insights not only advance our understand-

ing of LC biology but also chart promising directions for future

drug development, emphasizing precision medicine’s pivotal role

in oncology.

Our study has several limitations. Firstly, the GWAS data utilized

in our analysis were obtained from diverse large-scale sequenc-

ing studies, and variations in  the study protocols across different

cohorts might introduce bias. Secondly, our research primarily

focused on the European populations, making it challenging to

generalize our findings to  other ethnic ancestry. Nevertheless, we

conducted an extensive population-based validation study includ-

ing the UK and Finnish populations. More studies in non-European

ancestry needed to be further explored to translate these promising

drug targets into clinical application.

Conclusion

Our study elucidates the significant associations between LC

risk and the levels of specific proteins, notably TFPI, ICAM5,

SFTPB, COL6A3, EPHB1, and RNASET2, through proteome-wide

Mendelian randomization analysis. These findings not only spot-

light novel therapeutic targets, particularly ICAM5 and SFTPB, but

also underscore the necessity for further mechanistic studies to

fully understand their roles in LC  pathogenesis and treatment. By

providing a genetic underpinning for these potential targets, our

research paves the way for their future application in  develop-

ing more precise and effective LC  therapies, heralding a new era

of genetically informed drug discovery in  oncology.
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the online version, at doi:10.1016/j.arbres.2024.05.007.
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