Journal Information
Vol. 34. Issue 3.
Pages 127-132 (March 1998)
Share
Share
Download PDF
More article options
Vol. 34. Issue 3.
Pages 127-132 (March 1998)
Full text access
Valor de la estimación de la captación de oxígeno máxima postoperatoria en la predicción de insuficiencia cardiorrespiratoria en el postoperatorio inmediato de cirugía de tórax
Usefulnes of estimating maximum oxygen uptake after surgery for predicting cardiorespiratory insufficiency son after chest surgery
Visits
4765
L. Puente Maestu*, J.L. Rodríguez Hermosa, J.M. Ruiz de Oña, A. Santa-Cruz Seminiani, P. de Lucas Ramos, J. García de Pedro, E. Tatay Martí
Servicio de Neumología. Hospital General Universitario Gregorio Marañón. Madrid
This item has received
Article information

Nos planteamos determinar si la captación máxima de oxígeno estimado postoperatoria (VO2max/kg-PPO) se relaciona con la insuficiencia cardiorrespiratoria postoperatoria inmediata (60 días) tras cirugía de tórax y evaluar su validez como criterio de operabilidad. Estudiamos 47 pacientes con limitación crónica al flujo aéreo, FEV1 estimado postoperatorio > 0,8 1 y sin hipercapnia preoperatoria, sometidos a resección pulmonar por cáncer de pulmón. La edad fue 56 años (DE=11), FEV1=1,8 1 (DE=0,5), (61% [DE=13]) y FEV1/FVC=55% (DE=7,5). Diez pacientes presentaron insuficiencia respiratoria o cardíaca (tres murieron). El RV, TLCOsb-PPO, VO2max/kg, tamaño de resección y VO2max/kg-PPO mostraron correlación significativa con la aparición de complicaciones. VO2max/kg-PPO tenía una correlación (-0,73), significativamente mejor (p=0,0016) que las pruebas funcionales (PFB) y que VO2max/kg (p=0,049). Los puntos de corte y valores predictivos positivos y negativos fueron, respectivamente, 12,6ml/min/kg, 0,75 y 0,9 para VO2max/kg-PPO; 17 m1/min/kg 0,83 y 0,87 para el VO2max/kg y 148%, 0,67 y 0,82 para RV (la mejor de las pruebas funcionales). Los modelos multivariables no incrementaron el poder discriminativo. Concluimos que, de las variables estudiadas, VO2max/kg-PPO presentaba una correlación significativamente mayor que las PFB y que el VO2max/kg con la aparición de insuficiencia cardiorrespiratoria en los primeros 60 días postoperatorios. Como criterio para predecir dichas complicaciones, con la prevalencia observada, su valor predictivo negativo fue bueno, pero el valor predictivo positivo fue relativamente bajo. Ningún otro parámetro se comportó mejor.

Palabras clave:
Prueba de esfuerzo
Complicaciones postoperatorias
Cirugía torácica

We sought to determine if predicted post-operative maxi-mal oxygen uptake (VO2max/kg-PPO) was associated to the occurrence of respiratory or cardiac failure within the 60 days following lung surgery and to evaluate its validity as operability criterion. We studied 47 patients with chronic air-flow limitation (COPD) with FEV1> 0.8 1 and without hypercapnia, that underwent lung surgery. Age was 56 (SD 11) years, FEV1=1.8 (SD 0.5) 1 (61% predicted (SD 13%) and FEV1/FVC=55 (SD 7.5). Ten patients presented serious cardiac or repiratory complications (3 died). Significant correlation with complications was found for RV, TL-COsb-PPO, VO2max/kg, resection size and VO2max/kg-PPO. VO2max/kg-PPO correlation (-0.73) was significantly higher (p=0.0016) than all the pulmonary function test (PFT) correlation and than VO2max/kg correlation (p=0.049) as well. Cut-off points, positive and negative predictive values were respectively: 12.6ml/min/kg, 0.75 y 0.90% for VO2max/kg-PPO; 17ml/min/kg 0.83 and 0.87 for VO2max/kg and 148%, 0.67 and 0.82 for RV (the best of the pulmonary function tests). Multivariable models did not improve discriminant power. We conclude that, out of the studied variables, VO2max/kg-PPO showed higher correlation with the complications sought than PFT or VO2max/kg. As criterion to predict cardiac or respiratory failure, with the observed prevalence, its negative predictive values is good, but its positive predictive value is relatively low. None parameter was able to predict all the complications.

Key words:
Exercise test
Postoperative complications
Thoracic surgery
Full text is only aviable in PDF
Bibliografía
[1.]
E.A. Gaensler, D.W. Cugell, I. Lindgren, J.M. Verstraeten, S.S. Smith, J.W. Straeder.
The role of pulmonary insufficiency in mortality and invalidism following surgery for pulmonary tuberculosis.
J Thorac Cardiovasc Surg, 29 (1955), pp. 163-187
[2.]
G.D. Gass, G.N. Olsen.
Preoperative pulmonary function testing to predict postoperative morbidity and mortality.
Chest, 89 (1986), pp. 127-135
[3.]
R.A.M. Damhuis, P.R. Schhte.
Resection rates and postoperative mortality in 7.899 patients with lung Cancer.
Eur Respir J, 9 (1996), pp. 7-10
[4.]
P. Rochamis, H. Blackburn.
Exercise test: a survey of procedures, safety and litigation experience in approximately 170.000 tests.
JAMA, 217 (1971), pp. 1.061-1.066
[5.]
J.W.R. Bolton, D.S. Weiman, J.L. Haynes, C.A. Hornung, G.N. Olsen, C.H. Almond.
Stair climbing as indicator of pulmonary function.
Chest, 92 (1987), pp. 783-788
[6.]
G.N. Olsen.
The evolving role of exercise testing prior to lung resection.
Chest, 95 (1989), pp. 218-225
[7.]
W.C. Shoemaker, P.L. Appel, H.B. Kram.
Role of oxygen debt in the development of organ failure sepsis, and death in high risk surgical patients.
Chest, 102 (1992), pp. 208-215
[8.]
Standardised lung function testing.
Report Working Party “Standardisation of lung function tests”. En: Quanjer editor Eur Con Coal and Steel, Luxembourg, Jully, 1983.
Bull Eur Physiopath Resp, 19 (1983), pp. 22-27
[9.]
J.E. Cotes.
Lung function assessment and application in medicine.
4.a, Blackweel Scientific Publications, (1979), pp. 197-198
[10.]
B. Balke, R. Ware.
An experimental study of physical fitness of Air Force personnel.
US Armed Forces Med, 10 (1959), pp. 675-688
[11.]
J.E. Hansen, D.Y. Sue, K. Wasserman.
Predicted values for clinical exercise testing.
Am Rev Respir Dis, 129 (1984), pp. 49-55
[12.]
J.A. Wernly, T.R. De Mester, P.T. Krchner, P.D. Myerowitz, D.E. Oxford, H.M. Golomb.
Clinical value of quantitative ventilation-perfusion lung scan in surgical management of bronchogenic carcinoma.
J Thorac Cardiovasc Surg, 80 (1980), pp. 535-543
[13.]
BMDP Statistical Software INC., Copyright 1993. Los Ángeles
[14.]
P.A. Corris, D.A. Ellis, T. Hawkins, G.J. Gibson.
Use of radionuclide scanning in the preoperative estimation of pulmonary function after pneumonectomy.
horax, 42 (1987), pp. 285-291
[15.]
C. Bolliger, C. Wyser, H. Roser, M. SolPr, P. Perruchoud.
Lung scanning and exercise testing for the prediction of postoperative performance in lung resection candidates at increased risk.
Chest, 108 (1995), pp. 341-348
[16.]
M.C. Weinstein, W.B. Statson.
Foundations of cost/effectiveness analysis for health and medical practice.
N Eng J Med, 296 (1977), pp. 716-721
[17.]
J. Eugene, S.E. Brown, R.W. Light, N.E. Milne, E.A. Stemer.
Maximum oxygen consumption: a physiological guide to pulmonary resection.
Surg Forum, 33 (1982), pp. 260-262
[18.]
T.P. Smith, G.T. Kinasewith, W.Y. Tuker, W.P. Spillers, R.B. George.
Exercise capacity as predictor of post-thoracotomy morbidity.
Am Rev Respir Dis, 129 (1984), pp. 730-734
[19.]
D. Bechard, L. Westestein.
Assessment of exercise oxygen consumption as preoperative criterion for lung resection.
Ann Thorac Surg, 44 (1987), pp. 344-349
[20.]
S. Miyoshi, K. Nakahara, K. Ohno, Y. Monden, Y. Kawashima.
Exercise tolerance test in lung cancer patients; the relationships between exercise capacity and post-thoracotomy hospital mortality.
Ann Thorac Surg, 44 (1987), pp. 487-490
[21.]
G.N. Olsen, D.S. Wiman, J.W.R. Boston, G.D. Gass, W.C. McLain, G.A. Schoonover, et al.
Submaximal invasive exercise testing and quantitative lung scanning in the evaluation for tolerance of lung resection.
Chest, 95 (1989), pp. 267-273
[22.]
K. Nakagawa, K. Nakahara, S. Miyoshi, Y. Kawashima.
Oxygen transpon during incremental exercise load as predictor of operative risk in lung cancer patients.
Chest, 101 (1992), pp. 1.369-1.375
[23.]
S.K. Epstein, L.J. Faling, B.D.T. Daly, B.R. Celli.
Predicting complications after pulmonary resection: preoperative exercise testing vs a multifactorial cardiopulmonary risk index.
Chest, 104 (1993), pp. 694-700
[24.]
R.C. Morice, E.J. Peters, M.B. Ryan, J.B. Putnam, M.K. Ali, J.A. Roth.
Exercise testing in the evaluation of patients at high risk for complications from lung resection.
Chest, 101 (1992), pp. 356-361
[25.]
N.C. Colman, D.E. Schraufnagel, R.N. Rivington, R.L. Pardy.
Exercise testing in evaluation of patients for lung resection.
Am Rev Respir Dis, 125 (1982), pp. 604-606
[26.]
P. Usseti, J. Roca, A.G.N. Agusti, R. Rodríguez-Roisin, M. Heras, M. Catal, et al.
Failure of exercise tolerance and hemodinamics studies to predict early post-thoracotomy morbidity and mortality.
Am Rev Respir Dis, (1988), pp. A94
[27.]
J. Markos, B.P. Mullan, D.R. Hillman, A.W. Musk, V.F. Antico, F.T. Lovegrove, et al.
Preoperative assessment as a predictor of mortality and morbidity after lung resection.
Am Rev Respir Dis, 139 (1989), pp. 902-910
[28.]
L.J. Kohman, J.A. Meyer, P.M. Ikins, R.P. Oates.
Random versus predictable risks of mortality after thoracotomy for lung cancer.
J Thorac Cardiovasc Surg, 91 (1986), pp. 551-554
Copyright © 1998. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?