Journal Information
Vol. 47. Issue S2.
Importancia de la vía aérea distal (vía aérea pequeña) en el asma y en la EPOC
Pages 2-9 (April 2011)
Share
Share
Download PDF
More article options
Vol. 47. Issue S2.
Importancia de la vía aérea distal (vía aérea pequeña) en el asma y en la EPOC
Pages 2-9 (April 2011)
Full text access
Inflamación y remodelación de la vía aérea pequeña: estudios en humanos y modelos experimentales
Inflammation and remodeling of the distal airways: studies in humans and experimental models
Visits
13065
David Ramos-Barbóna,
Corresponding author
DRamosB@santpau.cat

Correo electrónico.
, Antonio Parra-Arrondob
a Servicio de Neumología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
b Servicio de Alergología, Complexo Hospitalario Universitario A Coruña, A Coruña, España
This item has received
Article information
Resumen

El asma se caracteriza por inflamación y remodelación de la vía aérea, que da lugar a la obstrucción de ésta y síntomas de sibilancias, opresión torácica, tos y disnea. La mayoría de estas observaciones surgen del estudio de muestras obtenidas de las vías aéreas centrales por distintos métodos, pero hoy en día se acepta que este proceso inflamatorio ocurre no sólo en la vía aérea central, sino también en la vía aérea pequeña (VAP) e incluso en el parénquima pulmonar de todos los pacientes asmáticos, incluso en aquellos con asma leve. Los linfocitos CD4+, eosinófilos activados, y la expresión de ARNm para interleucina 5 están presentes en mayor cantidad en la VAP. También existe remodelación, con incremento del grosor de la submucosa, capa muscular y adventicia. Este proceso inflamatorio causa un desacoplamiento entre el parénquima pulmonar y la vía aérea, dando lugar a una obstrucción de la pequeña vía aérea que hoy en día se considera como predominante en pacientes asmáticos. Los estudios de asma experimental en animales apoyan asimismo una relevante participación de la vía aérea distal. El reconocimiento del asma como una enfermedad que afecta a toda la vía aérea puede tener importancia clínica y obliga a considerar al pulmón distal como diana de cualquier estrategia terapéutica para un tratamiento efectivo de la enfermedad, aunque faltan estudios longitudinales que ayuden a valorar el impacto de la inflamación de la VAP y de su tratamiento en el asma.

Palabras clave:
Asma
Inflamación
Remodelación
Vía aérea pequeña
Abstract

Asthma is characterized by inflammation and remodeling of the airways, giving rise to airway obstruction and symptoms of wheezing, chest tightness, cough and dyspnea. Most of these observations arise from the study of samples obtained from the central airways by distinct methods. However, it is currently accepted that this inflammatory process occurs not only in the central airway but also in the small airway and even in the pulmonary parenchyma of all asthmatic patients, even those with mild asthma. CD4+ lymphocytes, activated eosinophils and IL-5 mRNA expression are present in a greater quantity in the small airways. Also present is remodeling, with an increase in submucosal thickness, the muscular layer and adventitia. This inflammatory process causes a disconnection between the pulmonary parenchyma and the airway, giving rise to obstruction of the small airway, which is currently considered to be predominant in asthmatic patients. Likewise, studies of experimental asthma in animals support the substantial role of the distal airway. Recognition that asthma affects the entire airway could be clinically important and lead to the distal lung being considered as a target in any effective therapeutic strategy. However, longitudinal studies are required to evaluate the impact of distal airway inflammation and its treatment in asthma.

Keywords:
Asthma
Inflammation
Remodeling
Small airways
Full text is only aviable in PDF
Bibliografía
[1.]
G. Levine, E. Housley, P. MacLeod, P.T. Macklem.
Gas exchange abnormalities in mild bronchitis and asymptomatic asthma.
N Engl J Med, 282 (1970), pp. 1277-1282
[2.]
P.J. Despas, M. Leroux, P.T. Macklem.
Site of airway obstruction in asthma as determined by measuring maximal expiratory flow breathing air and a helium-oxygen mixture.
J Clin Invest, 51 (1972), pp. 3235-3243
[3.]
M. Green.
How big are the bronchioles?.
St Thomas Hospital Gazette, 62 (1964), pp. 136-139
[4.]
J. Mead.
The lung's “quiet zone”.
N Engl J Med, 282 (1970), pp. 1318-1319
[5.]
Q. Hamid, Y. Song, T.C. Kotsimbos, E. Minshall, T.R. Bai, R.G. Hegele, et al.
Inflammation of small airways in asthma.
J Allergy Clin Immunol, 100 (1997), pp. 44-51
[6.]
M. Kraft, R. Djukanovic, S. Wilson, S.T. Holgate, R.J. Martin.
Alveolar tissue inflammation in asthma.
Am J Respir Crit Care Med, 154 (1996), pp. 1505-1510
[7.]
P.E. Taylor, R.C. Flagan, R. Valenta, M.M. Glovsky.
Release of allergens as respirable aerosols: A link between grass pollen and asthma.
J Allergy Clin Immunol, 109 (2002), pp. 51-56
[8.]
A. Bacsi, B.K. Choudhury, N. Dharajiya, S. Sur, I. Boldogh.
Subpollen particles: carriers of allergenic proteins and oxidases.
J Allergy Clin Immunol, 118 (2006), pp. 844-850
[9.]
E.M. Minshall, J.C. Hogg, Q.A. Hamid.
Cytokine mRNA expression in asthma is not restricted to the large airways.
J Allergy Clin Immunol, 101 (1998), pp. 386-390
[10.]
R.A. Taha, E.M. Minshall, D. Miotto, A. Shimbara, A. Luster, J.C. Hogg, et al.
Eotaxin and monocyte chemotactic protein-4 mRNA expression in small airways of asthmatic and nonasthmatic individuals.
J Allergy Clin Immunol, 103 (1999), pp. 476-483
[11.]
I.M. Adcock, T. Gilbey, C.M. Gelder, K.F. Chung, P.J. Barnes.
Glucocorticoid receptor localization in normal and asthmatic lung.
Am J Respir Crit Care Med, 154 (1996), pp. 771-782
[12.]
M.K. Tulic, Q. Hamid.
The role of the distal lung in asthma.
Semin Respir Crit Care Med, 23 (2002), pp. 347-359
[13.]
M. Yanai, K. Sekizawa, T. Ohrui, H. Sasaki, T. Takishima.
Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure.
J Appl Physiol, 72 (1992), pp. 1016-1023
[14.]
E.M. Wagner, E.R. Bleecker, S. Permutt, M.C. Liu.
Direct assessment of small airways reactivity in human subjects.
Am J Respir Crit Care Med, 157 (1998), pp. 447-452
[15.]
M.K. Tulic, Q. Hamid.
New insights into the pathophysiology of the small airways in asthma.
Clin Chest Med, 27 (2006), pp. 41-52
[16.]
N. Carroll, C. Cooke, A. James.
The distribution of eosinophils and lymphocytes in the large and small airways of asthmatics.
Eur Respir J, 10 (1997), pp. 292-300
[17.]
J.L. Faul, V.J. Tormey, C. Leonard, C.M. Burke, J. Farmer, S.J. Horne, et al.
Lung immunopathology in cases of sudden asthma death.
Eur Respir J, 10 (1997), pp. 301-307
[18.]
Q.A. Hamid.
Peripheral inflammation is more important than central inflammation.
Respir Med, 91 (1997), pp. 11-12
[19.]
K.J. Haley, M.E. Sunday, B.R. Wiggs, H.P. Kozakewich, J.J. Reilly, S.J. Mentzer, et al.
Inflammatory cell distribution within and along asthmatic airways.
Am J Respir Crit Care Med, 158 (1998), pp. 565-572
[20.]
M. Saetta, A. Di Stefano, C. Rosina, G. Thiene, L.M. Fabbri.
Quantitative structural analysis of peripheral airways and arteries in sudden fatal asthma.
Am Rev Respir Dis, 143 (1991), pp. 138-143
[21.]
M. Kraft, R.J. Martin, S. Wilson, R. Djukanovic, S.T. Holgate.
Lymphocyte and eosinophil influx into alveolar tissue in nocturnal asthma.
Am J Respir Crit Care Med, 159 (1999), pp. 228-234
[22.]
M. Kraft, E. Vianna, R.J. Martin, D.Y. Leung.
Nocturnal asthma is associated with reduced glucocorticoid receptor binding affinity and decreased steroid responsiveness at night.
J Allergy Clin Immunol, 103 (1999), pp. 66-71
[23.]
S.E. Wenzel, S.J. Szefler, D.Y. Leung, S.I. Sloan, M.D. Rex, R.J. Martin.
Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids.
Am J Respir Crit Care Med, 156 (1997), pp. 737-743
[24.]
W. Al-Ramli, D. Prefontaine, F. Chouiali, J.G. Martin, R. Olivenstein, C. Lemiere, et al.
T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma.
J Allergy Clin Immunol, 123 (2009), pp. 1185-1187
[25.]
C. Bergeron, H.P. Hauber, M. Gotfried, K. Newman, R. Dhanda, R.J. Servi, et al.
Evidence of remodeling in peripheral airways of patients with mild to moderate asthma: effect of hydrofluoroalkane-flunisolide.
J Allergy Clin Immunol, 116 (2005), pp. 983-989
[26.]
M. Ebina, T. Takahashi, T. Chiba, M. Motomiya.
Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study.
Am Rev Respir Dis, 148 (1993), pp. 720-726
[27.]
K. Kuwano, C.H. Bosken, P.D. Pare, T.R. Bai, B.R. Wiggs, J.C. Hogg.
Small airways dimensions in asthma and in chronic obstructive pulmonary disease.
Am Rev Respir Dis, 148 (1993), pp. 1220-1225
[28.]
M. Dolhnikoff, L.F. Da Silva, B.B. De Araujo, H.A. Gomes, S. Fernezlian, A. Mulder, et al.
The outer wall of small airways is a major site of remodeling in fatal asthma.
J Allergy Clin Immunol, 123 (2009), pp. 1090-1097
[29.]
A. James.
Airway remodeling in asthma.
Curr Opin Pulm Med, 11 (2005), pp. 1-6
[30.]
B.R. Wiggs, C. Bosken, P.D. Pare, A. James, J.C. Hogg.
A model of airway narrowing in asthma and in chronic obstructive pulmonary disease.
Am Rev Respir Dis, 145 (1992), pp. 1251-1258
[31.]
H.W. Mitchell, R. Cvetkovski, M.P. Sparrow, P.R. Gray, P.K. McFawn.
Concurrent measurement of smooth muscle shortening, lumen narrowing and flow to acetylcholine in large and small porcine bronchi.
Eur Respir J, 12 (1998), pp. 1053-1061
[32.]
J.L. Ellis, W.C. Hubbard, S. Meeker, B.J. Undem.
Ragweed antigen E and anti-IgE in human central versus peripheral isolated bronchi.
Am J Respir Crit Care Med, 150 (1994), pp. 717-723
[33.]
M. Kraft.
The distal airways: are they important in asthma?.
Eur Respir J, 14 (1999), pp. 1403-1417
[34.]
M. Cosio, H. Ghezzo, J.C. Hogg, R. Corbin, M. Loveland, J. Dosman, et al.
The relations between structural changes in small airways and pulmonary-function tests.
N Engl J Med, 298 (1978), pp. 1277-1281
[35.]
I.H. Van Veen, P.J. Sterk, R. Schot, S.A. Gauw, K.F. Rabe, E.H. Bel.
Alveolar nitric oxide versus measures of peripheral airway dysfunction in severe asthma.
Eur Respir J, 27 (2006), pp. 951-956
[36.]
C. Brindicci, K. Ito, O. Resta, N.B. Pride, P.J. Barnes, S.A. Kharitonov.
Exhaled nitric oxide from lung periphery is increased in COPD.
Eur Respir J, 26 (2005), pp. 52-59
[37.]
S. Verbanck, D. Schuermans, W. Vincken.
Inflammation and airway function in the lung periphery of patients with stable asthma.
J Allergy Clin Immunol, 125 (2010), pp. 611-616
[38.]
M. Berry, B. Hargadon, A. Morgan, M. Shelley, J. Richter, D. Shaw, et al.
Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma.
Eur Respir J, 25 (2005), pp. 986-991
[39.]
D. Ramos-Barbon, M.S. Ludwig, J.G. Martin.
Airway remodeling: lessons from animal models.
Clin Rev Allergy Immunol, 27 (2004), pp. 3-22
[40.]
R. Torres, C. Picado, F. De Mora.
Use of the mouse to unravel allergic asthma: a review of the pathogenesis of allergic asthma in mouse models and its similarity to the condition in humans.
Arch Bronconeumol, 41 (2005), pp. 141-152
[41.]
D.M. Hyde, Q. Hamid, C.G. Irvin.
Anatomy, pathology, and physiology of the tracheobronchial tree: emphasis on the distal airways.
J Allergy Clin Immunol, 124 (2009), pp. S72-S77
[42.]
J.G. Martin, D. Ramos-Barbon.
Airway smooth muscle growth from the perspective of animal models.
Resp Physiol Neurobiol, 137 (2003), pp. 251-261
[43.]
R. Torres, C. Picado, F. De Mora.
Again an asthma model. but a useful one.
Arch Bronconeumol, 45 (2009), pp. 419-421
[44.]
J.H. Bates, M. Rincon, C.G. Irvin.
Animal models of asthma.
Am J Physiol Lung Cell Mol Physiol, 297 (2009), pp. L401-L410
[45.]
S. Jonasson, G. Hedenstierna, H. Hedenstrom, J. Hjoberg.
Comparisons of effects of intravenous and inhaled methacholine on airway physiology in a murine asthma model.
Respir Physiol Neurobiol, 165 (2009), pp. 229-236
[46.]
M.L. North, N. Khanna, P.A. Marsden, H. Grasemann, J.A. Scott.
Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma.
Am J Physiol Lung Cell Mol Physiol, 296 (2009), pp. L911-L920
[47.]
J.M. Cowden, J.P. Riley, J.Y. Ma, R.L. Thurmond, P.J. Dunford.
Histamine H4 receptor antagonism diminishes existing airway inflammation and dysfunction via modulation of Th2 cytokines.
Respir Res, 11 (2010), pp. 86
[48.]
P.M. Renzi, R. Olivenstein, J.G. Martin.
Inflammatory cell populations in the airways and parenchyma after antigen challenge in the rat.
Am Rev Respir Dis, 147 (1993), pp. 967-974
[49.]
P.M. Renzi, R. Olivenstein, J.G. Martin.
Effect of dexamethasone on airway inflammation and responsiveness after antigen challenge of the rat.
Am Rev Respir Dis, 148 (1993), pp. 932-939
[50.]
S. Laberge, H. Rabb, T.B. Issekutz, J.G. Martin.
Role of VLA-4 and LFA-1 in allergen-induced airway hyperresponsiveness and lung inflammation in the rat.
Am J Respir Crit Care Med, 151 (1995), pp. 822-829
[51.]
S. Laberge, L. Wu, R. Olivenstein, L.J. Xu, P.M. Renzi, J.G. Martin.
Depletion of CD8+ T cells enhances pulmonary inflammation but not airway responsiveness after antigen challenge in rats.
J Allergy Clin Immunol, 98 (1996), pp. 617-627
[52.]
N. Li, J.R. Harkema, R.P. Lewandowski, M. Wang, L.A. Bramble, G.R. Gookin, et al.
Ambient ultrafine particles provide a strong adjuvant effect in the secondary immune response: implication for traffic-related asthma flares.
Am J Physiol Lung Cell Mol Physiol, 299 (2010), pp. L374-L383
[53.]
M. Wegmann, H. Fehrenbach, A. Fehrenbach, T. Held, C. Schramm, H. Garn, et al.
Involvement of distal airways in a chronic model of experimental asthma.
Clin Exp Allergy, 35 (2005), pp. 1263-1271
[54.]
J.S. Siegle, N. Hansbro, C. Herbert, M. Yang, P.S. Foster, R.K. Kumar.
Airway hyperreactivity in exacerbation of chronic asthma is independent of eosinophilic inflammation.
Am J Respir Cell Mol Biol, 35 (2006), pp. 565-570
[55.]
J. Schade, A. Schmiedl, A. Kehlen, T.Z. Veres, M. Stephan, R. Pabst, et al.
Airway-specific recruitment of T cells is reduced in a CD26-deficient F344 rat substrain.
Clin Exp Immunol, 158 (2009), pp. 133-142
[56.]
T. Du, S. Sapienza, D.H. Eidelman, N.S. Wang, J.G. Martin.
Morphometry of the airways during late responses to antigen challenge in the rat.
Am Rev Respir Dis, 143 (1991), pp. 132-137
[57.]
S. Pae, J.Y. Cho, S. Dayan, M. Miller, A.D. Pemberton, D.H. Broide.
Chronic allergen challenge induces bronchial mast cell accumulation in BALB/c but not C57BL/6 mice and is independent of IL-9.
Immunogenetics, 62 (2010), pp. 499-506
[58.]
T. Du, L.J. Xu, M. Lei, N.S. Wang, D.H. Eidelman, H. Ghezzo, et al.
Morphometric changes during the early airway response to allergen challenge in the rat.
Am Rev Respir Dis, 146 (1992), pp. 1037-1041
[59.]
J.A. Hirota, R. Ellis, M.D. Inman.
Regional differences in the pattern of airway remodeling following chronic allergen exposure in mice.
Respir Res, 7 (2006), pp. 120
[60.]
R.A. Panettieri Jr., R.K. Murray, A.J. Eszterhas, G. Bilgen, J.G. Martin.
Repeated allergen inhalations induce DNA synthesis in airway smooth muscle and epithelial cells in vivo.
Am J Physiol, 274 (1998), pp. L417-L424
[61.]
D. Ramos-Barbon, J.F. Presley, Q.A. Hamid, E.D. Fixman, J.G. Martin.
Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma.
J Clin Invest, 115 (2005), pp. 1580-1589
[62.]
R. Fraga-Iriso, L. Nunez-Naveira, N.S. Brienza, A. Centeno-Cortes, E. Lopez-Pelaez, H. Verea, et al.
Development of a murine model of airway inflammation and remodeling in experimental asthma.
Arch Bronconeumol, 45 (2009), pp. 422-428
[63.]
B. Herszberg, D. Ramos-Barbon, M. Tamaoka, J.G. Martin, J.P. Lavoie.
Heaves, an asthma-like equine disease, involves airway smooth muscle remodeling.
J Allergy Clin Immunol, 118 (2006), pp. 382-388
Copyright © 2011. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?