Journal Information
Vol. 36. Issue 1.
Pages 13-18 (January 2000)
Share
Share
Download PDF
More article options
Vol. 36. Issue 1.
Pages 13-18 (January 2000)
Full text access
Características de la actividad mecánica de los músculos respiratorios durante la técnica de “respiración diafragmática”*
Respiratory muscle mechanics during diaphragmatic breathing
Visits
18609
M. Pastóa, J. Geaa,b,
Corresponding author
jgea@imim.es

Correspondencia: Servei de Pneumologia. Hospital del Mar-IMIM. Avda. Doctor Aiguader, 80. 08003 Barcelona.
, M.C. Aguara, E. Barreiroc, M. Orozco-Levia, M. Féleza, J. Broquetasa,d
a Servei de Pneumologia y Unitat de Recerca Respiratòria-Ambiental. Hospital del Mar-IMIM
b Universitat Pompeu Fabra. Barcelona
c Royal Victoria Hospital, McGill University. Montreal. Canadá
d Universitat Autònoma de Barcelona. Barcelona
This item has received
Article information

Entre las técnicas de fisioterapia respiratoria destaca la llamada “respiración diafragmática” (RD). Sin embargo, y a pesar de su nombre, apenas se conocen las características funcionales de esta modalidad ventilatoria.

Objetivo

Evaluar la actividad mecánica de los músculos respiratorios, especialmente del diafragma, durante la RD en pacientes con EPOC grave.

Métodos

En 10 enfermos de esas características en fase estable (69±6 años, FEV1 33±12% ref), se estudiaron el patrón ventilatorio y las presiones respiratorias (abdominal o Pga, intratorácica o Pes y transdiafragmática o Pdi), tanto en situación basal como durante la respiración profunda con reclutamiento muscular espontáneo (RME) y la RD. El estudio se realizó tanto en sedestación (SED) como en decúbito supino (DEC).

Resultados

En SED, el patrón ventilatorio no presentó diferencias entre RME y RD. En cambio, la Pdi media a volumen corriente fue mayor durante la RD (respectivamente, 29,3±9,3 y 34,8±8,0cmH2O; p<0,05), para valores similares de Pes. Sin embargo, la efectividad mecánica del diafragma (expresada por el Vt/Pdi), era menor en RD (49,5 ±15,8 y 36,1±10,4cm3/cmH2O; p<0,05), sin cambios en la efectividad global de los músculos respiratorios (Vt/Pes). En DEC, los resultados fueron similares respecto del patrón ventilatorio para RME y RD, aunque Vt y TI fueron algo superiores en la segunda (respectivamente, 1.065±305 y 1.211±314cm3, p <0,01; y 2,76±1,32 frente a 3,07±1,23 s, p<0,05). La Pdi también presentó un valor más alto en RD (29,7±10,2 y 38,0±10,5cmH2O; p<0,05), acompañado en esta ocasión por una Pes también superior (21,2±7,5 a 26,4±8,4cmH2O; p<0,005). Siguiendo con el DEC, la efectividad tanto del diafragma como de la globalidad de los músculos respiratorios resultó similar para ambas modalidades ventilatorias.

Conclusiones

La RD realmente corresponde a un mayor uso del diafragma, tanto en SED como en DEC. Sin embargo, en pacientes con EPOC grave esto no se traduce en una mayor efectividad en términos ventilatorios, si se compara con la RME.

Palabras clave:
EPOC
Rehabilitación respiratoria
Diafragma

Noteworthy among breathing training techniques is so-called diaphragmatic breathing. In spite of the technique's name, however, little is known of the functional characteristics of this ventilatory method.

Objective

To assess the mechanics of respiratory muscles, particularly diaphragm muscles, during diaphragmatic breathing in patients with severe chronic obstructive pulmonary disease (COPD).

Methods

Ventilatory pattern and respiratory pressures (abdominal [Pga], intrathoracic [Pes] and transdiaphragmatic [Pdi]) were studied in 10 patients with severe COPD in stable phase (age 69±6 years, FEV1 33±12% ref) at baseline and during deep breathing with spontaneous muscle recruitment (SMR) and during breathing training. Measurements were taken with the patient seated and in supine decubitus position.

Results

In seated position ventilatory pattern was similar with SMR and during breathing training. Mean Pdi during airflow, however, was greater during breathing training than with SMR (34.8±8.0 and 29.3±9.3cmH2O, respectively, p<0.05) for similar levels of Pes. Mechanical effectiveness of the diaphragm expressed as Vt/Pdi) was less during breathing training, however (36.1±10.4 and 49.5±15.8 cc/cmH2O, p<0.05), with no changes in overall efficacy of respiratory muscles (Vt/Pes). In supine decubitus position, ventilatory patterns of SMR and breathing training were similar, although Vt and T1 were slightly higher in the latter (1,065±305 vs. 1,211±314 cc, p<0.01; and 2.76±1.32 vs. 3.07±1.23 sec, p<0.05). Pdi was also higher during breathing training (29.7±10.2 and 38.0±10.5cmH2O, p<0.05), although accompanied in this case by a higher Pes (21.2±7.5 to 26.4±8.4cmH2O, p<0.005). In supine decubitus position, the effectiveness of both diaphragm muscles and respiratory muscles overall was similar for both ventilatory modes.

Conclusions

Breathing training truly involves greater use of the diaphragm, both in seated and supine decubitus positions. Breathing training does not provide greater ventilatory efficacy than SMR, however, in COPD patients.

Key words:
COPD
Breathing training
Diaphragm
Full text is only aviable in PDF
Bibliografía
[1.]
M.J. Belman.
Exercise in patients with chronic obstructive pulmonary disease.
Thorax, 48 (1993), pp. 936-946
[2.]
A.L. Maccagno.
Reeducación diafragmática.
Kinesiología respiratoria, pp. 76-86
[3.]
D.V. Gaskell, B.A. Webber.
Ejercicios respiratorios.
Fisioterapia respiratoria, pp. 27-36
[4.]
R. Auge.
Mécanique musculaire.
La kinéssitherapia respiratoire en pratique courante, pp. 21-26
[5.]
R.A.A.M. Gosselink, R.C. Wagenaar, H. Rijswijk, A.J. Sargeant, M. Decramer.
Diaphragmatic breathing reduces efficiency of breathing in patients with chronic obstructive pulmonary disease.
Am J Crit Care Med, 151 (1995), pp. 1136-1142
[6.]
J. Roca, J. Sanchís, A. Agustí-Vidal, F. Segarra, D. Navakjas, R. Rodríguez- Roisín, et al.
Spirometric reference values for a mediterranean population.
Bull Eur Physiopathol Resp, 22 (1986), pp. 217-224
[7.]
J. Roca, F. Burgos, J.A. Barberà, J. Sunyer, R. Rodríguez-Roisín, J. Castellsagué, et al.
Prediction equations for plethysmographic lung volumes.
Respir Med, 92 (1998), pp. 454-460
[8.]
J. Roca, R. Rodríguez-Roisín, E. Cobo, F. Burgos, J. Pérez, J.L. Clausen.
Single breath carbon monoxide diffusing capacity (DLco) prediction equations for a mediterranean population.
Am Respir Dis, 141 (1990), pp. 1026-1032
[9.]
S.H. Wilson, N.T. Cooke, R.H.T. Edwards.
Predicted normal values for maximal inspiratory pressure in caucasian adults and children.
Thorax, 39 (1984), pp. 535-538
[10.]
D. Laporta, A. Grassino.
Assessment of transdiaphfragmatic pressure in humans.
J Appl Physiol, 58 (1985), pp. 1469-1476
[11.]
A.L. Barach.
Breathing exercises in pulmonary emphysema and allied chronic respiratory disease.
Arch Phys Med Rehabil, 36 (1955), pp. 379-390
[12.]
W.F. Miller.
Physical therapeutic measures in the treatment of chronic bronchopulmonary disorders. Methods for breathing training.
Am J Med, 24 (1958), pp. 929-940
[13.]
L. Zocchi, J.W. Fitting, U. Majani, C. Fracchia, C. Rampulla, A. Grassino.
Effect of pressure and timing of contraction of human rib cage muscle fatigue.
Am Rev Respir Dis, 147 (1993), pp. 857-864
[14.]
J.D. Sinclair.
The effect of breathing exercises in pulmonary emphysema.
Thorax, 10 (1955), pp. 246-249
[15.]
W.F. Miller.
A physiologic evaluation of the effects of diaphragmatic breathing training in patients with chronic pulmonary emphysema.
Am J Med, 17 (1954), pp. 471-477
[16.]
M.R. Becklake, M. McGregor, H.I. Goldman.
A study of the effects of physiotherapy in chronic hypertrophic emphysema using lung function tests.
Dis Chest, 26 (1954), pp. 180-191
[17.]
R.S. McNeill, J.M. McKenzie.
An assessment of the value of breathing exercises in chronic bronchitis and asthma.
Thorax, 10 (1955), pp. 250-252
[18.]
E.J.M. Campbell, J. Friend.
Action of breathing exercises in pulmonary emphysema.
Lancet, 1 (1955), pp. 325-329
[19.]
F. Bellemare, A. Grassino.
Effect of pressure and timing of contraction on human diaphragmatic fatigue.
J Appl Physiol, 53 (1982), pp. 1190-2002
[20.]
G. Grinby, H. Oxhoj, B. Bake.
Effects of abdominal breathing on distribution of ventilation in obstructive lung disease.
Clin Sci Molec Med, 48 (1975), pp. 193-199
[21.]
M. Decramer, X.I. Jian, M. Reid, S. Kelly, P.T. Macklem, M. Demedts.
Relationships between diaphragm lenght and abdominal dimensions.
J Appl Physiol, 61 (1986), pp. 1815-1820
[22.]
J. Mead, S.H. Loring.
Analysis of volume diplacement and lenght changes of the diaphragm during breathing.
J Appl Physiol, 53 (1982), pp. 750-755
[23.]
R.A.A.M. Gosselink, R.C. Wagenaar.
Efficacy of breathing exercises in chronic obstructive pulmonary disease and asthma: a metaanalysis of the literature.
J Rehabil Sci, 6 (1993), pp. 66-87
[24.]
J.J. Gilmartin, G.J. Gibson.
Abnormalities of chest wall motion in patients with chronic airflow obstruction.
Thorax, 39 (1984), pp. 264-271
[25.]
K. Ashutosh, R. Gilbert, J. Auchinloss, Hj, D. Peppi.
Asynchronous breathing movements in patients with COPD.
Chest, 67 (1975), pp. 553-557
[26.]
J.T. Sharp, N.M. Goldberg, W.S. Druz, H. Fishman, J. Danon.
Thoracoabdominal motion in COPD.
Am Rev Respir Dis, 115 (1977), pp. 47-56
[27.]
H.R. Delgado, S.R. Braun, J.B. Skatrud, W.G. Reddan, D.F. Pegelow.
Chest wall and abdominal motion during exercise in patients with COPD.
Am Rev Respir Dis, 126 (1982), pp. 200-205
[28.]
F.J. Martínez, J.I. Couser, B.R. Celli.
Factors influencing ventilatory muscle recruitment in patients with chronic airflow obstruction.
Am Rev Respir Dis, 142 (1990), pp. 276-282
[29.]
S. Levine, L. Kaiser, J. Leferovich, B. Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1799-1806
[30.]
Gea J, Hamid Q, Czaika G, Zhu E, Mohan-Ram V, Goldspink G et al. Expression of myosin heavy chain isoforms in the respiratory muscles following inspiratory resistive breathing. Am J Respir Crit Care Med 1999. En prensa.
[31.]
K.K. McCully, J.A. Faulkner.
Lenght-tension relationship of mammalian diaphragm muscles.
J Appl Physiol, 54 (1983), pp. 1681-1686
[32.]
J. Gea, E. Zhu, N. Comtois, I. Salazkin, B. Galdiz, A. Grassino.
Effects of the abdominal impedance on diaphragmatic twitches.
Resp Crit Care Med, 151 (1995), pp. 415
[33.]
N. Koulouris, D.A. Mulvey, C.M. Laroche, J. Goldstone, J. Moxham, M. Green.
The effect of posture and abdominal binding on respiratory pressures.
Eur Respir J, 2 (1989), pp. 961-965
[34.]
M.B. Cole, C. Stansky, F.E. Roberts, S.M. Hargan.
Studies in emphysema: long-term results of training diaphfragmatic breathing on the course of obstructive emphysema.
Arch Phys Med Rehabil, 43 (1962), pp. 561-564
[35.]
B.B. Brach, R.P. Chao, V.L. Sgroy.
133Xenon washout patterns during diaphragmatic breathing Studies in normal subjects and patients with chronic obstructive pulmonary diseases.
Chest, 71 (1977), pp. 735-739
[36.]
I.P. Williams, C.M. Smith, C.R. McGaving.
Diaphragmatic breathing training and walking performance in chronic airways obstruction.
Br J Dis Chest, 76 (1982), pp. 164-166
[37.]
M.A. Sackner, H. González, M. Rodríguez, A. Belsito, D.R. Sackher, S. Grenvik.
Assessment of asynchronous and paradoxic motion between rib cage and abdomen in normal subjects and in patients with chronic obstructive pulmonary disease.
Am Rev Respir Dis, 130 (1984), pp. 588-593
[38.]
R.L. Pardy, W.D. Reid, M.J. Belman.
Respiratory muscle training.
Clin Chest Med, 9 (1988), pp. 287-296
[39.]
L.J. Faling.
Pulmonary rehabilitation. Physical modalities.
Clinics in chest medicine, pp. 599-618
[40.]
E. Agostini, E. D’Angelo, M.V. Bonanni.
The effect of the abdomen on the vertical gradient of pleural surface pressure.
Respir Physil, 8 (1970), pp. 332-346
[41.]
A.B. Froese, A.C. Bryan.
Effects of anesthesia and paralysis on diaphragmatic mechanics in man.
Anesthesiology, 41 (1974), pp. 242-255

Financiado parcialmente por FUCAP, SIBEL, ARMAR y BIOMED (Unión Europea).

Copyright © 2000. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?