Journal Information
Vol. 36. Issue 6.
Pages 303-312 (June 2000)
Share
Share
Download PDF
More article options
Vol. 36. Issue 6.
Pages 303-312 (June 2000)
Full text access
Reproducibilidad mecánica y metabólica de la prueba de resistencia de los músculos espiratorios con cargas umbrales incrementales
Mechanical and metabolic reproducibility of the expiratory muscle endurance test using incremental threshold loading
Visits
7788
A. Ferrer
,1
Corresponding author
aferrer@cspt.es

Correspondencia: Unitat de Pneumologia. Hospital de Sabadell. Corporació Sanitaria Parc Taulí. Parc Taulí, s/n. 8208 Sabadell. Barcelona.
, M. Orozco-Levi, J. Gea, R. Méndez, A.L. Ramírez, J.M. Broquetas
Servei de Pneumologia. Hospital del Mar. Unitat de Recerca Respiratoria i Ambiental. Institut Municipal d’Investigació Mèdica. Universitat Pompeu Fabra. Barcelona
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Antecedentes

El estudio de la resistencia de los músculos respiratorios se ha centrado básicamente en los músculos inspiratorios. Recientemente, se ha descrito un nuevo método para cuantificar la resistencia a la fatiga de los músculos espiratorios mediante cargas umbrales espiratorias incrementales generadas mediante una válvula de émbolo cargado con pesos.

Objetivos

Evaluar las características mecánicas de la válvula y la reproducibilidad del método tanto desde el punto de vista mecánico como metabólico.

Métodos

Cuatro sujetos sanos no entrenados realizaron en 3 días no consecutivos una prueba incremental con cargas umbrales espiratorias (50 g cada 2 min) hasta que no pudieron abrir la válvula. En cada día se registró de forma continua la presión en la boca, y en los primeros 2 días también el consumo de oxígeno (V˙O2).

Resultados

Las presiones de apertura y cierre de la válvula fueron idénticas e independientes del flujo espiratorio, con una relación carga-presión lineal (4cmH2O por cada 10 g de peso). La carga máxima tolerada (CMT) en las 3 pruebas fue estable en dos de los sujetos, y los dos restantes llegaron al valor máximo en la segunda y tercera prueba, respectivamente. Durante laCMT de la tercera prueba, la presión media y pico en la boca (expresada como porcentaje de la presión espiratoria máxima [PEM]) fue de 49±4 y 71±4%, respectivamente, y el índice tensión-tiempo espiratorio medido en la boca ([Pmediaboca/PEM] × [TE/Ttot]) fue de 0,25±0,02 (TE: tiempo espiratorio; Ttot: tiempo total). En la primera y segunda pruebas se midió también el consumo de oxígeno de los músculos que fueron reclutados, básicamente los músculos espiratorios (V˙O2resp max), que en la última prueba fue de 213±65 mlO2/min (2,9±1,1 mlO2/kg/min). El coeficiente de variación intraindividual de los parámetros mecánicos osciló entre el 6,3 y el 19,5%, y el de los parámetros metabólicos entre el 14 y el 21%.

Conclusiones

La prueba de resistencia espiratoria utilizando una válvula de tipo umbral permite cuantificar la reserva y metabolismo musculares ante cargas espiratorias incrementales. La válvula propuesta presenta unas características mecánicas adecuadas a dicho objetivo y la reproducibilidad de la prueba es aceptable, aunque la determinación precisa de laCMT puede requerir hasta 3 pruebas.

Palabras clave:
Músculos respiratorios
Resistencia
Válvula espiratoria umbral
Consumo de oxígeno de los músculos respiratorios
Background

The study of respiratory muscle endurance has mainly focused on inspiratory muscles. A new method to measure expiratory muscle endurance, through incremental threshold loading using a weighted plunger valve, has recently been described.

Objectives

To evaluate the mechanical features of the plunger valve and the reproducibility of the method from the standpoint of both mechanics and metabolism.

Methods

Four untrained healthy subjects performed an incremental test with expiratory threshold loading (50 g every 2 min) on each of three non-consecutive days; each test continued until the subject could no longer open the valve. Mouth pressure was recorded continuously during each test; on the first two test days, oxygen consumption (VO2) was also measured.

Results

Opening and closing pressures were the same and were independent of expiratory flow, with a linear loadpressure relationship (4cmH2O) for every 10 g of weight). The maximal tolerated load (MTL) in the three tests was stable for two of the subjects, whereas the maximal load was reached by the other two subjects in the second and third tests, respectively. When MTL was reached in the third test, mean and peak mouth pressures (the latter expressed as percent of maximal expiratory pressure [MEP]) were 49±4% and 71±4%, respectively; the expiratory tension-time index measured at the mouth ([PMEANmouth/MEP] × [TE/Ttot]) was 0.25±0.02 (TE: expiratory time; Ttot: total time). In the first and second tests, we also measured oxygen the expiratory muscles (VO2respmax); consumption in the last test was 213±65 ml O2/min (2.9±1.1 ml O2/kg/min). The intraindividual coefficient of variation ranged from 6.3% to 19.5% for the mechanical parameters and from 14% to 21% for the metabolic ones.

Conclusions

The expiratory endurance test using a threshold valve allows quantification of muscle and metabolic reserve under incremental expiratory loads. The valve has appropriate mechanical characteristics for this purpose and reproducibility is acceptable, although the precise determination of the may require up to three tests.

Key words:
Respiratory muscles: endurance, oxygen consumption
Expiratory threshold valve
Full text is only aviable in PDF
Bibliografía
[1.]
M. Decramer, P.T. Macklem.
Pressures developed by the respiratory muscles.
pp. 1099-1126
[2.]
T.L. Clanton.
Respiratory muscle endurance in humans.
pp. 1199-1230
[3.]
L.F. Black, R.E. Hyatt.
Maximal respiratory pressures: normal values and relationship to age and sex.
Am Rev Respir Dis, 99 (1969), pp. 696-702
[4.]
F. Heritier, F. Rahm, P. Pasche, J.W. Fitting.
Sniff nasal inspiratory pressure. A noninvasive assessment of inspiratory muscle strength.
Am J Respir Crit Care Med, 150 (1994), pp. 1678-1683
[5.]
D. Laporta, A. Grassino.
Assessment of transdiaphragmatic pressure in humans.
J Appl Physiol, 58 (1985), pp. 1469-1476
[6.]
J.M. Miller, J. Moxham, M. Green.
The maximal sniff in the assessment of diaphragm function in man.
Clin Sci, 69 (1985), pp. 91-96
[7.]
A. Mier, C. Brophy, J. Moxham, M. Green.
Phrenic nerve stimulation in normal subjects and in patients with diaphragmatic weakness.
Thorax, 42 (1987), pp. 885-888
[8.]
T. Similowski, B. Fleury, S. Launois, H.P. Cathala, P. Bouche, J.P. Derenne.
Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans.
J Appl Physiol, 67 (1989), pp. 1311-1318
[9.]
B.G. Nickerson, T.G. Keens.
Measuring ventilatory muscle endurance in humans as sustainable inspiratory pressure.
J Appl Physiol, 52 (1982), pp. 768-772
[10.]
J.B. Martyn, R.H. Moreno, P.D. Pare, R.L. Pardy.
Measurement of inspiratory muscle performance with incremental threshold loading.
Am Rev Respir Dis, 135 (1987), pp. 919-923
[11.]
P.R. Eastwood, D.R. Hillman, K.E. Finucane.
Ventilatory responses to inspiratory threshold loading and role of muscle fatigue in task failure.
J Appl Physiol, 76 (1994), pp. 185-195
[12.]
P.R. Eastwood, D.R. Hillman, A.R. Morton, K.E. Finucane.
The effects of learning on the ventilatory responses to inspiratory threshold loading.
Am J Respir Crit Care Med, 158 (1998), pp. 1190-1196
[13.]
M.E. Ward, S.N.A. Hussain.
Respiratory muscle metabolism.
pp. 663-679
[14.]
C. Roussos, S. Zakynthimos.
Respiratory muscle energetics.
pp. 681-749
[15.]
D.K. McKenzie, S.C. Gandevia.
Strength and endurance of inspiratory complications and limb muscles in asthma.
Am Rev Respir Dis, 134 (1986), pp. 999-1004
[16.]
D. Fuller, J. Sullivan, R.F. Fregosi.
Expiratory muscle endurance performance after exhaustive submaximal exercise.
J Appl Physiol, 80 (1996), pp. 1495-1502
[17.]
S. Suzuki, J. Suzuki, T. Okubo.
Expiraty muscle fatigue in normal subjects.
J Appl Physiol, 70 (1991), pp. 2632-2639
[18.]
S. Suzuki, J. Suzuki, T. Ishii, T. Akahori, T. Okubo.
Relationship of respiratory effort sensation to expiratory muscle fatigue during expiratory threshold loading.
Am Rev Respir Dis, 145 (1992), pp. 461-466
[19.]
S. Suzuki, M. Sato, T. Okubo.
Expiratory muscle training and sensation of respiratory effort during exercise in noral subjects.
Thorax, 50 (1995), pp. 366-370
[20.]
M. Orozco-Levi, J. Gea, D. Maldonado, I.M. Broquetas.
Proposal for a threshold device to assess the endurance of expiratory muscles [resumen].
Am J Crit Care Med, 155 (1997), pp. A518
[21.]
Orozco-Levi M, Ferrer A, Méndez R, Ramírez AL, Broquetas JM, Gea G. Assesing expiratory muscle endurance with threshold loading.(remitido, pendiente de aceptación).
[22.]
F. Bellemare, A. Grassino.
Effect of pressure and timing of contraction on human diaphragm fatigue.
J Appl Physiol, 53 (1982), pp. 1190-1195
[23.]
P. Weiner, J. Suo, E. Fernández, R.M. Cherniack.
Efficiency of the respiratory muscles in healthy individuals.
Am Rev Respir Dis, 140 (1989), pp. 392-396
[24.]
P. Casan, M. Mayor, J. Galdiz, J. Giner, J.A. Fiz, J.M. Montserrat, et al.
Determinación de las presiones respiratorias estáticas máximas.
Propuesta de procedimiento. Arch Bronconeumol, 26 (1990), pp. 223-228
[25.]
S.H. Wilson, N.T. Cooke, R.H. Edwards, S.G. Spiro.
Predicted normal values for maximal respiratory pressures in caucasian adults and children.
Thorax, 39 (1984), pp. 535-538
[26.]
J.A. Dempsey, B.D. Johnson, K.W. Saupe.
Adaptations and limitations in the pulmonary system during exercise.
Chest, 97 (1990), pp. S81-S87
[27.]
A. De Troyer, M. Estenne, V. Ninane, D. Van Gansbeke, M. Gorini.
Transversus abdominis muscle function in humans.
J Appl Physiol, 68 (1990), pp. 1010-1016
[28.]
J. Loke, D.A. Mahler, J.A. Virgulto.
Respiratory muscle fatigue after marathon renning.
J Appl Physiol, 52 (1982), pp. 821-824
[29.]
S.C. Gandevia, D.K. McKenzie, I.R. Neering.
Endurance properties of respiratory and limb muscles.
Respir Physiol, 53 (1983), pp. 47-61
[30.]
R.E. Hyatt.
Forced expiration.
Handbook of physiology. Section 3: the respiratory system. Vol III. Mechanics of breathing, Part 1, pp. 295-314
[31.]
N.B. Pride, P.T. Macklem.
Lung mechanics in disease.
Handbook of physiology. Section 3: the respiratory system. Vol III. Mechanics of brathing, Part 2, pp. 659-692
[32.]
D.S. Dodd, T. Brancatisano, L.A. Engel.
Chest wall mechanics during exercise in patients with severe chronic air-flow obstruction.
Am Rev Respir Dis, 129 (1984), pp. 33-38
[33.]
V. Ninane, F. Rypens, J.C. Yernault, A. De Troyer.
Abdominal muscle use during breathing in patients with chronic airflow obstruction.
Am Rev Respir Dis, 146 (1992), pp. 16-21
[34.]
A. Ferrer, E. Barreiro, N. Hernández, J. Palacio, M. Orozco-Levi, J. Gea.
Características celulares del músculo oblicuo externo y función de los músculos espiratorios en pacients con EPOC muy grave [resumen].
Arch Bronconeumol, 35 (1999), pp. 28
[35.]
S. Freedman.
Sustained maximum voluntary ventilation.
Respir Physiol, 8 (1970), pp. 230-244
[36.]
D.E. Leith, M. Bradley.
Ventilatory muscle strength and endurance training.
J Appl Physiol, 41 (1976), pp. 508-516
[37.]
M.J. Belman, C. Mittman.
Ventilatory muscle training improves exercise capacity in chronic obstructive pulmonary disease patients.
Am Rev Respir Dis, 121 (1980), pp. 273-280
[38.]
T.R. Bai, B.J. Rabinovitch, R.L. Pardy.
Near-maximal voluntary hyperpnea and ventilatory muscle function.
J Appl Physiol, 57 (1984), pp. 1742-1748
[39.]
C.S. Roussos, P.T. Macklem.
Diaphragmatic fatigue in man.
J Appl Physiol, 43 (1977), pp. 189-197
[40.]
T.L. Clanton, G.F. Dixon, J. Drake, J.E. Gadel.
Effects of breathing pattern on inspiratory muscle endurance in humans.
J Appl Physiol, 59 (1985), pp. 1834-1840
[41.]
P. Jederlinic, J.A. Muspratt, M.J. Miller.
Inspiratory muscle training in clinical practice, Physiologic conditioning or habituation to suffocation?.
Chest, 86 (1984), pp. 870-873
[42.]
M.J. Belman, S.G. Thomas, M.I. Lewis.
Resistive breathing training in patients with chronic obstructive pulmonary disease.
Chest, 90 (1986), pp. 662-669
[43.]
F.D. McCool, D.R. McCann, D.E. Leith, F.G. Hoppin Jr..
Pressure-flow effects on endurance of inspiratory muscles.
J Appl Physiol, 60 (1986), pp. 299-303
[44.]
F.D. McCool, D.E. Leith.
Mean airway opening pressure as an index of inspiratory muscle task intensity.
J Appl Physiol, 60 (1986), pp. 304-306
[45.]
P.R. Eastwood, D.R. Hillman.
A threshold loading device for testing of inspiratory muscle performance.
Eur Respir J, 8 (1995), pp. 463-466
[46.]
S.P. Keenan, D. Alexander, J.D. Road, C.F. Ryan, J. Oger, P.G. Wilcox.
Ventilatory muscle strength and endurance in myasthenia gravis.
Eur Respir J, 8 (1995), pp. 1130-1135
[47.]
T. Perez, L.A. Becquart, B. Stach, B. Wallaert, A.B. Tonnel.
Inspiratory muscle strenght and endurance in steroid-dependent asthma.
Am J Respir Crit Care Med, 153 (1996), pp. 610-615
[48.]
J.T. Walsh, R. Andrews, P. Johnson, L. Phillips, A.J. Cowley, W.J. Kinnear.
Inspiratory muscle endurance in patients with chronic heart failure.
Heart, 76 (1996), pp. 332-336
[49.]
N.J. Morrison, J. Richardson, L. Dunn, R.L. Pardy.
Respiratory muscle performance in normal elderly subjects and patients with COPD.
Chest, 95 (1989), pp. 90-94
[50.]
P. Weiner, Y. Azgad, M. Weiner.
Inspiratory muscle training during treatment with corticosteroids in humans.
Chest, 107 (1995), pp. 1041-1044
[51.]
P.H. Johnson, A.J. Cowley, W.J. Kinnear.
Evaluation of the THRESHOLD trainer for inspiratory muscle endurance training: comparison with the weighted plunger method.
Eur Respir J, 9 (1996), pp. 2681-2684
[52.]
E.A. Aaaron, B.D. Johnson, C.K. Seow, J.A. Dempsey.
Oxygen cost of exercise hypernea: measurement.
J Appl Physiol, 72 (1992), pp. 1810-1817
[53.]
E.A. Aaron, K.C. Seow, B.D. Johnson, J.A. Dempsey.
Oxygen cost of exercise hyperpnea: implications for performance.
J Appl Physiol, 72 (1992), pp. 1818-1825
[54.]
C.V. Katsardis, K.J. Desmond, A.L. Coates.
Measuring the oxygen cost of breathing in normal adults and patients with cystic fibrosis.
Respir Physiol, 65 (1986), pp. 257-266
[55.]
P.W. Collett, L.A. Engel.
Influence of lung volume on oxygen cost of resistive breathing.
J Appl Physiol, 61 (1986), pp. 16-24
[56.]
F.D. McCool, G.E. Tzelepis, D.E. Leith, F.G. Hoppin Jr..
Oxygen cost of breathing during fatiguing inspiratory resistive loads.
J Appl Physiol, 66 (1989), pp. 2045-2055

El Dr. A. Ferrer fue becario posdoctroal (beca de ampliación de estudios del FIS (98/5088). Estudio subvencionado en parte por las becas BIOMED PL-963406, ASTRA-BIOMED y SIBEL.

Copyright © 2000. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?