Journal Information
Vol. 37. Issue 3.
Pages 108-114 (March 2001)
Share
Share
Download PDF
More article options
Vol. 37. Issue 3.
Pages 108-114 (March 2001)
Full text access
Actividad metabólica del músculo intercostal externo en pacientes con EPOC
Metabolic activity of the external intercostal muscle of patients with COPD
Visits
9684
M. Pastó, J. Gea
Corresponding author
jgea@imim.es

Correspondencia: Servei de Pneumologia. Hospital del Mar. IMIM. Passeig Marítim, 27. 08003 Barcelona.
, M.L. Blanco, M. Orozco-Levi, O. Pallás, M.J. Masdeu, J. Broquetas
Servei de Pneumologia. Hospital del Mar. IMIM. Universitat Pompeu Fabra. Universitat Autònoma de Barcelona. Barcelona
This item has received
Article information
Abstract
Bibliography
Download PDF
Statistics
Introducción

El músculo intercostal externo (IE) contribuye de forma relevante al esfuerzo ventilatorio en situaciones de sobrecarga. Como otros músculos respiratorios, el IE parece participar en un proceso de remodelación estructural, para adaptarse a una situación funcional desventajosa. Sin embargo, los estudios morfológicos publicados ofrecen resultados hasta cierto punto divergentes. Por un lado, aumenta la proporción de fibras de metabolismo anaerobio, mientras que por otro se incrementa el número de capilares, lo que facilitaría el uso de un metabolismo de tipo aerobio.

Objetivo

Este estudio se diseñó para analizar la actividad de diferentes enzimas clave, correspondientes a las principales vías metabólicas, en el IE de pacientes con enfermedad pulmonar obstructiva crónica (EPOC).

Metodología

Se estudiaron 6 pacientes con EPOC (65 ± 8 años; índice de masa corporal [IMC]: 23 ± 3 kg/m2; FEV1: 51 ± 9% ref., volumen residual [RV: 184 ± 38% ref.; PaO2: 81 ± 100 mmHg) y 6 sujetos control, apareados por edad y características antropométricas, pero con función pulmonar normal. En todos ellos se procedió a la toma de muestras del IE (quinto espacio intercostal, lado no dominante), que fueron procesadas para la determinación de las siguientes actividades enzimáticas por espectrofotometría convencional: citratosintetasa (CS, ciclo de Krebs), fosfofructocinasa (PFK, vía glucolítica común), lactodeshidrogenasa (LDH, glucólisis anaerobia) y creatinfosfocinasa (CPK, uso de reservas energéticas).

Resultados

Los pacientes con EPOC presentaron mayor actividad de las enzimas PFK (93 ± 25 frente a 44 ± 9 mmol/min/g de peso en fresco; p = 0,001) y LDH (308 ± 42 ante 231 ± 29 mmol/min/g; p < 0,01) que los sujetos control. Por el contrario, las actividades de CS y CPK fueron similares (82 ± 31 frente a 90 ± 20 mmol/min/g, y 4.017 ± 1.734 ante 3.048 ± 464 mmol/min/g, respectivamente), aunque la segunda presentaba una dispersión muy notable de valores en los pacientes con EPOC, que en algunos casos triplicaban a los de los controles. El RV se correlacionó directamente con la actividad de las enzimas glucolíticas (con PFK, r = 0,716, p < 0,01; con LDH, r = 0,697, p < 0,05), que también se correlacionaban entre sí (r = 0,737, p < 0,01).

Conclusiones

A tenor de las actividades enzimáticas estudiadas, la actividad oxidativa parece conservada en el IE de sujetos con EPOC. Por su parte, la actividad de la vía glicolítica parece hallarse aumentada, y este aumento es proporcional a la gravedad de la EPOC. Estos resultados son probablemente la expresión del efecto combinado de diversos factores estructurales de carácter adaptativo.

Palabras clave:
Músculo intercostal
Metabolismo
EPOC
Introduction

The external intercostal muscle is a relevant contributor to ventilatory work in situations of overloading. Like other respiratory muscles, the external intercostal muscle seems to undergo a process of structural remodeling to adapt to a situation of functional disadvantage. However, findings from published studies of morphology have differed to a certain degree. On the one hand, the proportion of fibers involved in anaerobic metabolism increases; on the other hand, the number of capillaries also increases, an occurrence that would facilitate aerobic metabolism.

Objective

This study was designed to analyze the activity of several key enzymes involved in the principal metabolic pathways in the external intercostal muscles of patients with COPD.

Methodology

We studied 6 patients with COPD (65 ± 8 years, BMI 23 ± 3 kg/m2, FEV1 51 ± 9% ref, RV 184 ± 38% ref, PaO2 81 ± 10 mmHg) and 6 control subjects matched for age and anthropometric variables but with normal lung function. External intercostal muscle samples were taken from each patient (fifth intercostal space, non-dominant side). The samples were treated by conventional spectrophotometry to determine enzyme activity as follows: citrate synthase (CS, Krebs cycle), phosphofructokinase (PFK, by common glycolysis), lactate dehydrogenase (LDH, anaerobic glycolysis) and creatine phosphokinase (CPK, use of energy reserves).

Results

Patients with COPD showed greater PFK enzyme activity (93 ± 25 versus 44 ± 9 μmol/min/g of fresh weight; p = 0.001) and LDH (308 ± 42 versus 231 ± 29 μmol/min/g; p < 0.01) than did control subjects. However, CS and CPK activity was similar in both groups (82 ± 31 versus 90 ± 20 μmol/min/g and 4017 ± 1734 versus 3048 ± 464 μmol/min/g, respectively), although the latter displayed noteworthy dispersion of values among COPD patients, with levels in some patients being three-fold greater than in controls. RV was directly related to glycolytic enzyme activity (with PFK, r = 0.716, p < 0.01; with LDH r = 0.697, p < 0.05) and PFK and LDH also correlated with each other (r = 0.737, p < 0.01).

Conclusions

Based on the enzyme activity studied, oxidative activity seems to be conserved in the external intercostal muscle of patients with COPD. Activity in the glycolytic pathway seems to increase and the increase is proportional to the severity of COPD. These findings are probably the expression of a combination of adaptive structural factors.

Key words:
Intercostal muscle
Metabolism
COPD
Full text is only aviable in PDF
Bibliografía
[1.]
G.H. Koepke, E.M. Smith, A.J. Murphy, D.G. Dickinson.
Sequence of action of the diaphragm and intercostal muscles during respiration. I. Inspiration.
Arch Phys Med Rehabil, 40 (1959), pp. 337-342
[2.]
K. Buzinska, G. Supinski, A.F. Di Marco.
Inspiratory action of separate external and paraesternal intercostal muscle contraction.
J Appl Physiol, 67 (1989), pp. 1395-1400
[3.]
A. De Troyer, S. Kelly, P.T. Macklem.
Mechanic of intercostal space and action of external and internal intercostal muscles.
J Clin Invest, 75 (1985), pp. 850-895
[4.]
M.G. Sampson, A. De Troyer.
Role of intercostal muscles in the rib cage distortions produced by inspiratory loads.
J Appl Physiol, 52 (1982), pp. 517-523
[5.]
S. Yan, B. Kayser.
Differential inspiratory muscle pressure contributions to breathing during dynamic hyperinflation.
Am J Respir Crit Care Med, 156 (1997), pp. 497-503
[6.]
M.C. Aguar, J. Gea, M. Orozco-Levi, M. Pastó, J. Minguella, J. Corominas, et al.
Structural changes and function of intercostal muscles in COPD patients. An outpatient model of biopsy.
Am J Respir Crit Care Med, 151 (1995), pp. A806
[7.]
M.A. Jiménez-Fuentes, J. Gea, M.C. Aguar, J. Minguella, J. Lloreta, M. Félez, et al.
Densidad capilar y función respiratoria en el músculo intercostal externo.
Arch Bronconeumol, 35 (1999), pp. 471-476
[8.]
N.B. Pride, P. Vermeire.
Definition and differential diagnosis.
Management of chronic obstructive pulmonary disease, pp. 2-5
[9.]
J. Roca, J. Sanchís, A. Agustí-Vidal, F. Segarra, D. Navajas, R. Rodríguez- Roisin, et al.
Spirometric reference values for a mediterranean population.
Bull Eur Physiopathol Resp, 22 (1986), pp. 217-224
[10.]
J. Roca, F. Burgos, J.A. Barberá, J. Sunyer, R. Rodríguez-roisin, J. Castellsagué, et al.
Prediction equations of plethysmographic lung volumes.
Respir Med, 92 (1998), pp. 454-460
[11.]
J. Roca, R. Rodríguez-roisón, E. Cobo, F. Burgos, J. Pérez, J.L. Clausen.
Single-breath carbon monoxide diuffusing capacity (DLco) prediction equations for a mediterranean population.
Am Rev Respir Dis, 141 (1990), pp. 1026-1032
[12.]
P. Morales, J. Sanchís, P.J. Cordero, J.L. Díez.
Presiones respiratorias estáticas máximas en adultos. Valores de referencia para población mediterránea caucásica.
Arch Bronconeumol, 33 (1997), pp. 213-219
[13.]
J.B. Martyn, R.H. Moreno, P.D. Paré, R.L. Pardy.
Measurement of inspiratory muscle performance with incremental threshold loading.
Am Rev Respir Dis, 135 (1987), pp. 919-923
[14.]
M.A. Jiménez-Fuentes, J. Gea, O. Pallás, F. Gallego, M. Félez, J. Broquetas.
Morfometría fibrilar del músculo intercostal externo. Comparación entre los datos dominante y no dominante en pacientes con EPOC severa.
Arch Bronconeumol, 4 (1998), pp. 189-193
[15.]
V.A. Zammit, E.A. Newsholme.
The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenase, lactate dehydrogenase, octopine, dehydrogenase, phosphoenolpyruvate, carboxykinase, nucleoside diphosphatekinase, glutamate-oxalate transaminase and arginine kinase in relation of carbohydrate utilisation in muscle from invertebrates.
Biochem J, 160 (1976), pp. 447-462
[16.]
L.H. Opie, E.A. Newsholme.
The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle.
Biochem J, 103 (1967), pp. 391-399
[17.]
P.A. Srere.
Citrate synthase.
Methods Enzymol, 13 (1969), pp. 3-11
[18.]
P.A. Tesch, A. Thorsson, B.E. Gustavsson.
Enzyme activities of FT and ST muscle fibers in heavy resistance trained athletes.
J Appl Physiol, 67 (1989), pp. 83-87
[19.]
M. Orozco-Levi, J. Gea, J. Loreta, M. Félez, J. Minguella, S. Serrano, et al.
Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease.
Eur Respir J, 13 (1999), pp. 371-378
[20.]
S. Levine, L. Kaiser, J. Leferovich, B. Tikunov.
Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease.
N Engl J Med, 337 (1997), pp. 1799-1806
[21.]
J. Sauleda, J. Gea, M. Orozco-Levi, J. Corominas, J. Minguella, C. Aguar, et al.
Structure and function relationships of the respiratory musles.
Eur Respir J, 11 (1998), pp. 906-911
[22.]
M. Orozco-Levi, J. Gea, M.C. Aguar, J.M. Broquetas.
Changes in the capillary content in the diagphragm of COPD patients: a sort of muscle remodelling?.
Am J Respir Crit Care Med, 153 (1996), pp. A298
[23.]
E. Zhu, B. Petroff, J. Gea, N. Comtois, A. Grassino.
Diaphragm muscle injury after inspiratory resistive breathing.
Am J Respir Crit Care Med, 155 (1997), pp. 1110-1116
[24.]
J. Gea, Q. Hamid, G. Czaika, E. Zhu, V. Mohan-ram, G. Goldspink, et al.
Expression of myosin heavy chain isoforms in the respiratory muscles following resistive breathing.
Am J Respir Crit Care Med, 161 (2000), pp. 1274-1278
[25.]
M. Orozco-Levi, J. Gea, J. Lloreta, J. Minguella, S. Serrano, J.M. Broquetas.
Evidence of diaphragm damage induced by inspiratory loading in both healthy subjects and COPD patients.
Am J Crit Care Med, 161 (2000), pp. A752
[26.]
J. Gea, M. Pastó, S. Ennion, G. Goldsping, J.M. Broquetas.
Expression of the genes corresponding to myosin heavy chain isoforms (MyHC I, IIa and IIx) in the diaphragm of patients of suffering from COPD.
Eur Respor J, 12 (1998), pp. 267
[27.]
J. Gea.
Myosin gene expression in the respiratory muscles.
Eur Resp J, 10 (1997), pp. 2404-2410
[28.]
M. Tamm, M. Roth, M. Bihl, P. Eickelberg, P. Stulz, S. Perruchoud, et al.
Hypoxia-induced IL-6, IL-8 and VEGF production is mediated by platelet-activating factor (PAF).
Am J Respir Crit Care Med, 153 (1996), pp. 636
[29.]
J. Palacio, J.B. Gáldiz, M. Orozco-Levi, M. Mariñán, N. Hernández, J. Gea.
Changes in the structure of diaphragm induced by subacute inspiratory loading.
Am J Respir Crit Care Med, 161 (2000), pp. A19
[30.]
J. Sauleda, F. García-palmer, R.J. Wiester, S. Tarraga, I. Harting, P. Tomás, et al.
Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med, 157 (1998), pp. 1413-1417

Estudio subvencionado por Biomed (UE), Astra-Biomed, Sibel-Biomed y Armar

Copyright © 2001. Sociedad Española de Neumología y Cirugía Torácica
Archivos de Bronconeumología
Article options
Tools

Are you a health professional able to prescribe or dispense drugs?